Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Constructing a novel three-dimensional scaffold with mesoporous TiO₂

nanotubes for potential bone tissue engineering

Yizao Wan ^{a,b}, Peng Chang ^a, Zhiwei Yang ^a, Guangyao Xiong *^b, Ping Liu ^a, Honglin

Luo *a

^a School of Materials Science and Engineering, Tianjin University, Tianjin Key

Laboratory of Composite and Functional Materials, Tianjin 300072, China

^b School of Mechanical and Electrical Engineering, East China Jiaotong University,

Nanchang 330013, China

Authors for correspondence:

Prof. Guangyao Xiong, xiongguangyao@163.com

Dr. Honglin Luo, hlluotju@126.com

Samples	BET surface area	Pore volume	Mesopore size
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
BC aerogel	149.9	0.8954	13.73
TiO ₂ /BC aerogel	82.5	0.1180	3.50
TiO ₂ nanotube	1629.0	2.565	3.30
scaffold			

Table S1 Pore structure parameters of TiO_2 nanotube scaffold.

Fig. S1 SEM images of pristine BC (a) and BC/TiO₂ hybrids synthesized in ethanol with different $Ti(OBu)_4$ concentrations ((b) 0.1 M, (c) 0.5, (d) 1.0 M).

Fig. S2 SEM images of BC/TiO₂ hybrids synthesized in isopropanol with different $Ti(OBu)_4$ concentrations ((a) 0.1 M, (b) 0.5 M, (c) 1.0 M) and EDS spectrum from the sample synthesized at 1.0 M (d).

Fig. S3 XRD patterns of BC (a), TiO₂/BC hybrid (b), and TiO₂ nanotubes calcined at 600 °C (c).

BC shows three main peaks at around 14.6, 16.9, and 22.9 °, corresponding to the crystalline planes of $(1\bar{1}0)$, (110), and (020) planes of cellulose type I.^{2, 3} The intensity of these peaks in the spectrum of TiO₂/BC hybrid is much lower due to the presence of TiO₂ coating. The absence of the diffraction peaks of TiO₂ indicates the amorphous nature of the TiO₂ on BC nanofibers. In the spectrum of TiO₂ nanotubes calcined at 600 °C for 6 h, the transformation from amorphous to crystalline TiO₂ is demonstrated through the detection of the six characteristic peaks assigned to diffraction planes of (101), (004), (200), (105), (211), and (204) of anatase TiO₂ (JCPDS 21-1272). This is understandable since titania obtained through sol-gel hydrolysis is amorphous and crystallization can be induced by heat treatment.⁴

Fig. S4 TGA-DSC curves of BC (a), BC/TiO₂ (b), and TiO₂ nanotubes (c).

BC experiences two continuous weight loss steps in the range of 290–330 °C and 330–432 °C, respectively, accompanied with two endothermic peaks at about 321 and 388 °C in the DSC curve (Fig. S4a). The thermal degradation of BC was ascribed to dehydration, depolymerization, and decomposition of glycosyl units followed by the formation of a charred residue.^{5, 6} Unlike pristine BC, BC/TiO₂ hybrid shows three-

step weight-losses. The slight weight-loss before 170 °C is ascribed to the loss of adsorbed and bonded water. The biggest and fastest weight loss that occurred in the range of 251–297 °C with an endothermic peak at about 294 °C is due to the thermal degradation of BC fibers. The last weight loss in 306–421 °C range with an endothermic peak at about 381 °C is the thermal degradation of BC fibers. Note that the decomposition temperature of BC/TiO₂ hybrid has shifted from about 290 °C to about 251 °C (Fig. S4b), suggesting earlier thermal decomposition of BC in the presence of TiO₂ coating, which is similar to the promotion of gold and TiO₂ nanoparticles on cellulose because of their catalytic effects.^{7, 8} For TiO₂ nanotubes, the weight loss up to 800 °C is only about 9% (Fig. S4c), indicating good thermal stability of TiO₂ nanotubes.

Fig. S5 Pore size distribution of TiO_2 nanotube scaffold measured by mercury intrusion porosimetry.

References

- Y. Z. Wan, Y. Huang, C. D. Yuan, S. Raman, Y. Zhu, H. J. Jiang, F. He and C. Gao, *Mater. Sci. Engin. C*, 2007, **27**, 855-864.
- 2. C. Tokoh, K. Takabe, M. Fujita and H. Saiki, *Cellulose*, 1998, **5**, 249-261.
- H. Luo, G. Xiong, Z. Yang, S. R. Raman, H. Si and Y. Wan, *RSC Adv.*, 2014,
 4, 14369-14372.
- 4. J.-P. Hsu and A. Nacu, *Langmuir*, 2003, **19**, 4448-4454.
- H. S. Barud, A. M. de Araújo Júnior, D. B. Santos, R. de Assunção, C. S. Meireles, D. A. Cerqueira, G. Rodrigues Filho, C. A. Ribeiro, Y. Messaddeq and S. J. L. Ribeiro, *Thermochim. Acta*, 2008, 471, 61-69.
- 6. M. Ul-Islam, T. Khan and J. K. Park, *Carbohydr. Polym.*, 2012, **89**, 1189-1197.
- 7. J. Cai, S. Kimura, M. Wada and S. Kuga, *Biomacromolecules*, 2009, **10**, 87-94.
- 8. J. Zeng, S. Liu, J. Cai and L. Zhang, J. Phys. Chem. C, 2010, 114, 7806-7811.