Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2015

Supporting information

For the manuscript

Novel Triphosphorylation Polyurethane Nanoparticles for Blood-contacting Biomaterials' Coating

Jun Zhang^a, Zhijun Sun^a, aomiao Zhu^a, Qiaochu Guo^b, hengai He^a, Ao Xia^{a*}, Hong Mo^a, Xiaohua Huang^{a*}, Jian Shen^a

a. Jiangsu Collaborative Innovation Center of Biomedical Functional Materials,

Jiangsu Key Laboratory of Biomedical Materials & College of Chemistry and

Materials Science, Nanjing Normal University, Nanjing 210029, People's Republic of China. Fax: +86 25 83599188,

b. Nanjing Foreign Languages School, Nanjing 210029, People's Republic of China.

*Author to whom all correspondence should be addressed E-mail Address: aoxia@njnu.edu.cn huangxiaohuabio@hotmail.com Tel: +86-25-83598031, Fax: +86-25-83716813

Quantum chemistry calculation of NH⁺(C₂H₅)₃–P₃O₁₀^{5–}

All the molecules were completely optimized using the DFT/B3LYP method with the 6-31+g(df,p) basis set. All the theoretical calculations were carried out using the GAUSSIAN 03 program package with the default convergence criteria.

Interaction energy is defined as $E_b = E_{(product)} - E_{(reactant)}$. In this study, $E_{(reactant)}$ is the sum energy of constituent molecules in a pair including the cationic quaternary ammonium salt NH⁺(C₂H₅)₃ and PO₄^{3–}/or P₃O₁₀^{5–}, each of which were previously optimized independently. Then, the pair of constituent molecules being placed together in a proper position was optimized to generate a final geometry, and the corresponding energy minima could be considered as $E_{(product)}$.

From Table 1, the E_b of the NH⁺(C₂H₅)₃–P₃O₁₀^{5–} pair is -0.6857720 a.u., which is lower than that of the NH⁺(C₂H₅)₃–PO₄^{3–} pair (-0.5710717 a.u.). The ΔE_b is about -301.58 kJ/mol, which could explain the stronger interaction of NH⁺(C₂H₅)₃ and P₃O₁₀^{5–} than the pair of NH⁺(C₂H₅)₃–PO₄^{3–}.

Supplementary Table 1. The corresponding energy of each individual molecule and pair

	Energy (a.u.) calculated at B3LYP/6-31+g(df,p) level
Individual PO ₄ ³⁻	-642.002181748
Individual P ₃ O ₁₀ ⁵⁻	-1775.89352468
Individual NH ⁺ (C ₂ H ₅) ₃	-292.833437537
Pair of $NH^+(C_2H_5)_3$ —PO ₄ ³⁻	-935.406691004
Pair of NH ⁺ (C ₂ H ₅) ₃ —P ₃ O ₁₀ ⁵⁻	-2069.41273429
E_b of NH ⁺ (C ₂ H ₅) ₃ —PO ₄ ³⁻	-0.571071719
E _b of NH ⁺ (C ₂ H ₅) ₃ —P ₃ O ₁₀ ⁵⁻	-0.685772073
$\Delta E_b = E_b (NH^+ (C_2H_5)_3 - P_3O_{10}^5)_{-1}$	$E_{b}(NH^{+}(C_{2}H_{5})_{3}-PO_{4}^{3-}) = -301.5778 \text{ KJ/mol}$

A proton transfer could be observed from the optimized geometry of both pairs. As demonstrated in Figure 1, the optimized structure of the $NH^+(C_2H_5)_3$ – PO_4^{3-} pair was characterized by the plane P25–O26–O25 (plane POO, for short) in the HPO_4^{2-} molecule, being parallel with the plane C2–C4–C6 (plane CCC, for short) of the $N(C_2H_5)_3$ molecule, and the two negatively charged oxygen atoms pointing to the

hydrogen atoms of the N(C₂H₅)₃ molecule. It turned out that the planes POO and CCC nearly coincided However, a similar situation was not found in NH⁺(C₂H₅)₃–P₃O₁₀^{5–} in which the center of the P₃O₁₀^{5–} molecule was apart from the plane CCC of the N(C₂H₅)₃ in the perpendicular direction to the plane CCC (Figure 2). The analysis showed that P₃O₁₀^{5–} can receive a proton from NH⁺(C₂H₅)₃ and locate the minima without too much structural adjustment, whereas the HPO₄^{3–} needed to consume some of the energy to translate to a similar height of the plane CCC, and to hold a specified orientation towards the N(C₂H₅)₃ upon receiving a proton.

Supplementary Figure 1. The optimized geometry of NH⁺(C₂H₅)₃—PO₄³⁻

pair.

Supplementary Figure 2. The optimized geometry of NH⁺(C₂H₅)₃—P₃O₁₀⁵⁻ pair

For $P_3O_{10}^{5-}$, the bond connecting the bridge oxygen atom and the terminal phosphorus atom is marked in Figure 3. With an equal length of 1.7182 Å for both of the marked bonds provided by an independent optimization process seemed reasonable because of molecular symmetry. However, by reacting with $NH^+(C_2H_5)_3$, one of the above bond lengths became longer than before, with a value of 1.8489 Å in the final optimized $N(C_2H_5)_3$ -HP₃O₁₀⁵⁻ structure, and the other one remained nearly

at the original value. By receiving a proton, $P_3O_{10}^{5-}$ might have a tendency to bonding with $NH^+(C_2H_5)_3$ center.

Supplementary Figure 3. The optimized of P₃O₁₀⁵⁻ molecule individually.