SUPPORTING INFORMATION

Effects of spontaneous nitrogen incorporation by a 4*H*-SiC(0001) surface caused by Plasma Nitridation

Dae-Kyoung Kim¹, Yu-Seon Kang¹, Kwang-Sik Jeong¹, Hang-Kyu Kang¹, Sang Wan Cho², Kwun-Bum Chung³, Hyoungsub Kim⁴, and Mann-Ho Cho^{1,*}

¹Institute of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea ²Department of Physics, Yonsei University, 1 Yonseidae-gil, Wonju-si, Gangwon-do 220-710, Republic of Korea ³Division of Physics and Semiconductor Science, Dongguk University, Seoul, 100-715, Korea ⁴School Department of Material Science and Engineering, Sungkyunkwan University, Suwon440-746, Korea

*Electronic mail address: mh.cho@yonsei.ac.kr (Mann-Ho Cho).

Figure S1. (a) image of Plasma Nitridation (PN) process, Nitridation was performed at room temperature for 180 s under a 1000 sccm N_2 gas (ignition Ar, 10 s, working pressure 1 Torr) and plasma power 4100 – 4300 W, (b) Nitrogen ratio as a function of nitridation time, nitrogen saturation time calibrated by XPS (at 180 s).

Figure S2. (a) XPS Si 2*p* and (b) N 1*s* core-level spectra $Al_2O_3(2 \text{ nm})/SiC$, PN/SiC, HF/PN/SiC and $Al_2O_3(2 \text{ nm})/HF/PN/SiC$. In the Si 2*p* and N 1*s* spectra, The spectra show that a significant amount of nitrogen atoms remains (Si–N, Si-O-N perfect bonds) in the $Al_2O_3(2 \text{ nm})/HF/PN/SiC$ after the unstable oxide is removed by a selective etching process using HF.

Figure S3. Cross-sectional HRTEM images of the (a) Al_2O_3/SiC and the (b) $Al_2O_3/PN/SiC$ substrate after ALD-Al_2O_3 (30 nm) and TiN metal gate deposition. The J-E curve of electric field (MV/cm) was calculated by the thickness of dielectric layers and gate voltage (V_g).

Figure S4. The stress field (MV/cm) and gate voltage (V_g) were calibrated by dielectric thickness (figure S3), (a) Al₂O₃/SiC (7.49 MV/cm, $V_g = 20.6$ V) and (b) Al₂O₃/PN/SiC (7.49 MV/cm, $V_g = 21.4$ V), respectively. The results of defect states (frequency dispersion, D_{it} and border trap density) was significantly suppressed in Al₂O₃/PN/SiC by the PN treatment of SiC at the same electric field (7.49 MV/cm).