Supplementary Information

Crystalline Structure-Tunable, Surface Oxidation- Suppressed Ni Nanoparticles: Printable Magnetic Colloidal Fluids for Flexible Electronics

Yejin Jo,^a Sang-Jin Oh,^{a,b} Sun Sook Lee,^a Yeong-Hui Seo,^a Beyong-Hwan Ryu,^a Dae Ho Yoon,^b Youngmin Choi,^{a,*} Sunho Jeong^{a,*}

^a Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), Daejeon 305-600, Republic of Korea.
E-mail: youngmin@krict.re.kr; sjeong@krict.re.kr

^b Department of Advanced Materials Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.

Figure S1. X-ray diffraction result for Ni nanoparticles synthesized without oleic acid (sample #1).

Figure S2. (a) X-ray diffraction results for Ni nanoparticles synthesized with different concentrations of phenylhydrazine, 5.5 M (sample #5), and 4.5 M (sample #6), without the presence of oleic acid.

Figure S3. X-ray photoelectron spectroscopy spectra of Ni $2p_{3/2}$ for Ni nanoparticles synthesized with different concentrations of phenylhydrazine, 5.5 M (sample #5), and 4.5 M (sample #6), without the presence of oleic acid.

Figure S4. Field-dependent magnetization of Ni $2p_{3/2}$ for Ni nanoparticles synthesized with different concentrations of phenylhydrazine, 5.5 M (sample #5), and 4.5 M (sample #6), without the presence of oleic acid.

Figure S5. UV-visible spectroscopy for the Ni nanoparticle film printed on a glass substrate. The absorption background of the glass substrate was subtracted.

Figure S6. X-ray photoelectron spectroscopy spectra of Ni $2p_{3/2}$ for the Ni nanoparticle film photo-annealed at 2.0 kV for 1.5 msec.

Figure S7. (a) The variation of photon energies as a function of voltage and duration time, (b) the variation of intensity depending on the applied voltage in the range of 2.0~3.0 kV.

Figure S8. Resistivity evolution in Ni nanoparticle films, patterned on a PI substrate by airbrush printing of Ni nanoparticle suspension, depending on flash-type photonic annealing conditions (voltage and time).

Figure S9. The adhesion tests for air brush-printed Ni films on either PI or PET substrate after photonic annealing process. The printed Ni nanoparticle layers were photo-annealed on PI and PET for at 2.5 kV 1.0 msec and at 2.0 kV for 1.5 msec, respectively.