Comparative Study of Using Different Alkali Metal Alkylcarboxylates as Electron Injection Materials in OLEDs

Ronggang Shangguan,^a Guangyuan Mu,^a and Lei Wang,^{*a} Shaoqing Zhuang,^a

Wangbo,^a Chin H. Chen^b

^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

^bGuangdong Aglaia Optoelectronic Materials Co., Ltd, Shunde, Guangdong 528300, P. R. China.

^bGuangdong Aglaia Optoelectronic Materials Co., Ltd, Guang Zhou, 510000,

P. R. China.

* Corresponding Author, E-mail: wanglei@mail.hust.edu.cn; Tel: +86-27-87793032.

1. The affect of the EIL thickness on the electroluminescent characteristics of devices.

(c) Dependence of efficiency on the thickness of $(CH_3)_3CCOONa$ in the device ITO/NPB (60 nm)/Alq₃ (50 nm)/ (CH₃)₃CCOONa /Al; (d) J-V-B curves of the devices;

(e) Dependence of efficiency on the thickness of $(CH_3)_3CCOOK$ in the device ITO/NPB (60 nm)/Alq₃ (50 nm)/ (CH₃)₃CCOOK /Al; (f) J-V-B curves of the devices;

(g) Dependence of efficiency on the thickness of $(CH_3)_3CCOORb$ in the device ITO/NPB (60 nm)/Alq₃ (50 nm)/ (CH₃)₃CCOORb /Al; (h) J-V-B curves of the devices.

SFig.2 (a) Dependence of efficiency on the thickness of (CH₃)₃CCOOLi in the device ITO/NPB (60 nm)/Alq₃ (35 nm) / m-ADN (15 nm)/ (CH₃)₃CCOOLi /Al; (b) J-V-B curves of the devices;
(c) Dependence of efficiency on the thickness of (CH₃)₃CCOONa in the device ITO/NPB (60 nm)/Alq₃ (35 nm) / m-ADN (15 nm)/ (CH₃)₃CCOONa /Al; (d) J-V-B curves of the devices;
(e) Dependence of efficiency on the thickness of (CH₃)₃CCOOK in the device ITO/NPB (60 nm)/Alq₃ (35 nm) / m-ADN (15 nm)/ (CH₃)₃CCOOK /Al; (f) J-V-B curves of the devices;
(g) Dependence of efficiency on the thickness of (CH₃)₃CCOORb in the device ITO/NPB (60 nm)/Alq₃ (35 nm) / m-ADN (15 nm)/ (CH₃)₃CCOORb /Al; (h) J-V-B curves of the devices;

SFig.3 (a) The affect of CH₃COOCs thickness on J-V curves for the electron-only device Al/Alq₃ (100 nm)/CH₃COOCs/Al; (b) The affect of CH₃COOCs thickness on J-V curves for the electron-only device Al/m-ADN (100 nm)/CH₃COOCs/Al;

(c) The affect of CH_3CH_2COOCs thickness on J-V curves for the electron-only device Al/Alq₃ (100 nm)/ CH_3CH_2COOCs /Al; (d) The affect of CH_3CH_2COOCs thickness on J-V curves for the electron-only device Al/m-ADN (100 nm)/ CH_3CH_2COOCs /Al;

(e) The affect of $(CH_3)_2$ CHCOOCs thickness on J-V curves for the electron-only device Al/Alq₃ (100 nm)/ (CH₃)₂CHCOOCs /Al; (f) The affect of $(CH_3)_2$ CHCOOCs thickness on J-V curves for the electron-only device Al/m-ADN (100 nm)/ (CH₃)₂CHCOOCs /Al.

SFig.4 (a) Dependence of efficiency on the thickness of CsF in the device ITO/2-TNATA (60 nm)/NPB (10 nm)/Alq3:2%C545T (40 nm)/m-ADN(15 nm)/CsF/Al; (b) J-V-B curves of the devices.

sFig. 5 UPS spectrums of the m-ADN film before and after the deposition of the five alkali metal pivalate complexes.