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1. XPS analysis of GO and rGO.

Scheme S1. Representative sketches of GO (a) and rGO (b) based on the Lerf-Klinowski model.[1]

XPS C1s core-level spectra of GO and rGO are shown in Fig. S1a and b. To evaluate the reduction 

efficiency we relied on the atomic O/C ratio (see main text). Data are in line with the observed 

increased fraction of C sp2 domains, from 41.5% in GO to 56.2% in rGO, respectively. 

Fig. S1. XPS core-level C1s spectra of GO (a) and rGO (b).
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2. Functionalization of the graphene-based materials: molecular structures of linkers and ligands

In Fig. S2 we show the molecular structures of the different molecules used in this work for the QD 

surface modification and rGO functionalization: ATP, ABA, MPTS and MUA. 

Fig. S2. Structure of the different molecules used.

3. XPS analysis of ATP and ABA functionalized rGO and TEM images for the QDs coupling results.

XPS spectra of the rGO samples functionalized with ATP and ABA are shown in Fig. S3a-d. Both 

functionalization approaches lead to the formation of an amide bond (peak at 400.3 eV, N1s core-

level spectrum, Fig. S3c) between the aromatic ring and the rGO, leaving the corresponding thiol of 

ATP (Fig. S3d) and carboxylic group of ABA exposed. This bonding is also supported by the 

appearance of a C-N peak at 285.6 eV in the C1s core level spectra (Fig. S3a-b). The comparable N/C 

and S/C ratios show that the functionalization achieved in both cases is similar. We also observed the 

nitrate peak in the corresponding N1s core-level spectrum (Fig. S3c) and a plasmon loss peak of the Si 

substrate in the S2p core-level spectrum (Fig. S3d). However, these are unrelated to the ABA and ATP 

molecules, respectively, as the nitrate  (NO3
-) peak likely remains from the production of GO where 

NaNO3 was used, or from the NaNO2 added in the functionalization reaction.[2, 3] Therefore, they are 

not considered in the determination of the rGO degree of functionalization. The low coverage 

achieved with both ABA and ATP (N/C atomic ratio of 0.02) is also reflected by the assembly of the 

QDs on the ABA- or ATP-f- rGO sheets (Fig. S3e), where QDs are found mainly along edges and ridges.
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Fig. S3. XPS core-level C1s spectra of ABA-f-rGO (a) and ATP-f-rGO (b). XPS core-level N1s and S2p 
spectra of ABA-f-rGO (c) and ATP-f-rGO (d), respectively. (e) Representative TEM image of core PbS 
QDs (5.0 nm diameter)/ABA-f-rGO. 

4. Silane-functionalization and QD coupling in GO. 

We evaluated the GO degree of functionalization achieved using MPTS by quantitative XPS analysis 

of the S/C and Si/C atomic ratios (Fig. S4), obtaining an average ratio of 0.15. Thus, also in the case of 

GO we increased the degree of functionalization with regards to ABA or ATP. As in the case of silane-

f-rGO presented in the main text, the best fit for the S2p profiles in the silane-f-GO is obtained by 

using two components: (i) a minor component centered at 164.2 ± 0.2 eV, corresponding to 10 ± 2 % 

of the total amount of sulfur, which is related to disulfide bonds. (ii) A main component centered at 

163.2 ± 0.2 eV, constituting 90 ± 2 % of the total signal, which corresponds to the thiol head group.
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Fig. S4. XPS core-level S2p and Si2s spectra of silane-f-GO. The Si2s peak is centered at (153.2±0.2) eV, a 
typical position for silanes. For the S2p spectrum, the fitted curves correspond to unbound thiols (blue 
line) and disulfide (orange line).

The preparation procedure for coupling the QDs and silane-f-GO is the same as for silane-f-rGO. After 

attaching the QDs to the silane-f-GO sheets, the TEM images (Fig. S5) show that a well-controlled 

hybrid material is achieved, where the QDs cover exclusively the GO sheets.

Fig. S5. (a-d) Representative TEM images of PbS QDs (5.0 nm diameter)/GO hybrid materials 
prepared from silane-f-GO. Comparison of the QD coverage achieved varying the QD/GO material 
ratio from 0.2 (c) to 0.8 (d) nmol QDs per µg GO. (e-f) Representative TEM images of hybrid materials 
prepared from silane-f-GO with different materials (e) CdSe QDs (5.8 nm) and (f) CdSe/CdS DIRs (28.3 
nm length, 5.1 nm diameter).
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From the QD PL dynamics analysis (Fig. S6) we observed that in the hybrid PbS QD/silane-f-GO a 

lower PL quenching, of up to 90%, and lifetime reduction from 1.4 µs (PbS QDs in TCE) to 178 ns (87% 

reduction) are achieved. Thus, the degree of reduction of the graphene-based material plays a role in 

the energy/charge transfer processes as discussed in the main text.

Fig. S6. Absorbance and PL (a, b) spectra of PbS QD/silane-f-GO hybrid materials dispersed in DMF 
with varying relative QD concentration (ratios 0.2, 0.4 and 0.8 nmol QDs per µg GO). The data from 
the reference, OA-capped PbS QDs in TCE, are shown as black lines. (c) Corresponding PL decay 
traces and fits for pure PbS QDs (red line) and PbS QD/silane-f-GO hybrid materials (green line) 
prepared with a relative concentration of 0.2 nmol per µg GO. 

5. Estimation of the density of PbS QDs on the silane-f-(r)GO sheets. 

To estimate the number of QDs attached on the surface of the (r)GO from TEM, we transformed 

experimental TEM images into a binary image (Fig. S7). The image is generated by applying a cutoff at 

an adequate intensity threshold, hereby separating the (r)GO background from the QDs. Then we 

evaluated the area occupied by the QDs and the surface of the underlying (r)GO sheet. The density of 

QDs is calculated as the total QD area divided by the area of the individual QDs (diameter 5.0 nm, 

area 19.6 nm2). Table S1 presents the average obtained from the analysis of at least 4 TEM images at 

different scales for each sample. 
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Fig. S7. Representative TEM images and the corresponding binary images of PbS QD/silane-f-(r)GO 
hybrid material at different QD/(r)GO ratios: on silane-f-GO with 0.2 (a, b) and 0.8 (c, d) nmol QDs per 
μg of GO, and on silane-f-rGO with 0.2 (e, f) and 0.8 (g, h) nmol QDs per μg of rGO.

Sample nmol QDs per μg (r)GO QDs per nm2 of (r)GO

0.2 0.009 ± 0.001
PbS QDs/silane-f-GO

0.8 0.014 ± 0.002

0.2 0.029 ± 0.004
PbS QDs/silane-f-rGO

0.8 0.047 ± 0.002

Table S1. Data of the density of PbS QDs on silane-f-(r)GO sheets obtained from the TEM images 
analysis. Clearly, despite similar silane functionalization, the rGO sheets display a higher QD density.
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6. Complementary control experiments

6.1. Ligand exchange and fluorescence spectroscopy characterization of MUA-capped PbS QDs. 

In order to evaluate the effect of the thiol head group and the DMF solvent on the QDs PL emission 

properties, we prepared the QDs with an 11-mercaptoundecanoic acid (MUA) ligand shell. This 

molecule links in the same way as the silane and due to the exposed carboxylic head group, it allows 

dispersing the QDs in polar solvents such as DMF. To carry out the ligand exchange of OA with MUA 

we slightly adapted an experimental protocol already published.[6] Briefly, we added 1 mL of a 0.05 M 

MUA solution prepared in MeOH (0.1 M KOH, basic pH conditions) to a 100 μL toluene solution of 

OA-capped PbS QDs (45 μM).

From the time-resolved fluorescence decay (Fig. S8 and Table S2), we observed that the change of 

the ligand and solvent somewhat affect the QD PL emission properties, yet the exciton lifetime does 

not fall below 40-45% of the original value for MUA. Most importantly, the interaction of the QDs 

with the rGO promotes a much stronger reduction, and considering that in the case of the hybrid 

materials we do not replace all original OA ligands by thiols, we can assume that the inherent PL 

should be even less affected by ligand exchange, such that the PL quenching in the hybrid materials 

can be assigned to charge transfer to the rGO.

Fig. S8. PL decay traces of MUA-capped PbS QDs dispersed in DMF with regard to the original OA-
capped PbS QDs for two different core size samples, i.e. 5.0 nm (a) and 5.6 nm (b). The OA-capped 
PbS QDs were dispersed in TCE, the ligand-exchanged samples in DMF.
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Sample Solvent Ligand τeff / µs
OA 1.4core PbS (5.0 nm) TCE MUA 0.63
OA 0.99core PbS (5.6 nm) TCE MUA 0.40

Table S2. Effective lifetime obtained from the fitting of the corresponding PL decay curves for the 
MUA-capped PbS QDs samples prepared in DMF.

6.2. EtOH washing effect on the QD PL emission properties. 

To evaluate the influence of the EtOH washing steps used during the preparation of the hybrid 

materials on the QDs PL emission properties, we have carried out additional PL spectroscopy 

measurements. Since we used 2 washing steps for the hybrid materials, we evaluated the PL after 2 

and 3 precipitation steps with EtOH. Fig. S9 shows that 2 steps do not significantly affect the PL, with 

a minor PL decrease and a constant PL decay time (suggesting some increased hot exciton trapping 

or fraction of dark QDs, yet no additional nonradiative losses once the carriers reach the band edge). 

After 3 steps, we observe a strong PL quenching in both the spectrum and the decay. This concurs 

with the observation of QDs aggregates in the solution and an increased background in the 

absorbance spectrum due to Rayleigh scattering. Therefore, we can conclude that the QD PL 

emission quenching in the QD/rGO hybrid materials is not due to the 2 EtOH washing steps applied, 

and thus must arise from the interaction between QDs and rGO.  
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Fig. S9. Absorbance (a) and PL (b) spectra (excitation at 400 nm) of OA-capped PbS QDs (black line) 
modified by successive washing steps with EtOH dispersed in TCE. PL spectra are normalized to the 
corresponding absorption (at the excitation wavelength) of the sample. (c, d) The corresponding PL 
decays (excitation 405 nm, emission 1355 nm) are also shown. 

6. Raman characterization. 

In order to confirm the reproducibility of the Raman spectra, measurements have been carried out in 

at least 3 different areas for each sample, obtaining a reliable position of the D and G bands (Fig. 

S10). In the main text and ESI, all shifts reported correspond to the average obtained from the three 

spectra. 

Fig. S10. Comparison between the Raman spectra for different areas of the sample core PbS 
QD/silane-f-rGO (a) and core PbS QD/silane-f-GO (b).



10

From the Raman analysis of the PbS QD/silane-f-GO hybrids (Fig. S11) we observed that the silane 

functionalization of GO leads to a G band upshift of 10 ± 2 cm-1. The attachment of core PbS QDs 

leads to a downshift of 8 ± 1 cm-1 compared with the original silane-f-GO spectrum. The shift 

observed in the case of the GO-based hybrid is lower than for rGO, highlighting the effect of the 

degree of reduction on the charge transfer process. The Raman shift of the G band can be ascribed to 

an electron enrichment of the graphene network in PbS QDs-(r)GO hybrid materials and is reduced in 

the presence of the CdS shell. 

Fig. S11. Comparison between representative Raman spectra of the different core and core-shell 
PbS/CdS QDs and silane-f-GO hybrid samples. In the three lower spectra we systematically varied the 
shell thickness. The Raman spectrum of the reference material GO is shown as an orange line.
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8. PL dynamics in core-shell PbS/CdS QDs and silane-f-(r)GO hybrid materials. 

Sample Core diameter
(nm)

Shell thickness
(nm)

τQD

(µs)
τQD-G

(µs) η

4.98 0 1.4 0.18 0.86

4.06 0.21 1.2 0.20 0.83

4.15 0.42 0.90 0.30 0.67

4.59 0.82 0.72 0.34 0.54

6.29 0.90 0.36 0.10 0.72

PbS QDs/silane-f-GO

5.79 1.13 0.28 0.19 0.30

4.98 0 1.4 0.066 0.95

4.06 0.21 1.2 0.074 0.94

4.19 0.40 0.66 0.18 0.73

4.59 0.82 0.72 0.15 0.79

PbS QDs/silane-f-rGO

6.29 0.90 0.36 0.07 0.80

Table S3. PL dynamics data obtained from the time-resolved measurements and Equation 1 (see 
main text) for the different core-shell PbS/CdS QD/silane-f-(r)GO hybrid materials (at the same 
QD/(r)GO ratio, 0.2 nmol QD per µg (r)GO) prepared in DMF. The efficiency is calculated using the 
decay time of the corresponding QDs in TCE.
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