1	High carrier-mobility crystalline silicon film directly grown on polyimide by
2	SiCl ₄ /H ₂ microwave plasma for flexible thin film transistors
3	
4	Ping-Yen Hsieh, Chi-Young Lee and Nyan-Hwa Tai*
5	
6	Department of Materials Science and Engineering, National Tsing Hua University, No.
7	101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	* Corresponding author: Nyan-Hwa Tai
21	Postal address: Department of Materials Science and Engineering, National Tsing Hua
22	University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan, R.O.C.
23	Tel.: +866 3 5715131 #42568
24	Fax: + 886 3 5737406
25	E-mail address: nhtai@mx.nthu.edu.tw

1 Supporting information

3 Fig. S1 Schematics of the MEPECVD system for the deposition of crystalline Si film.

2 Fig. S2 Flowchart of the preparation processes for flexible Si-TFTs.

2 Fig. S3 Raman mapping of the prepared Si film under H₂ flow rate 100 sccm, (a)
3 integrated intensity map of crystalline phase near 520 cm⁻¹, (b) integrated intensity map
4 of the amorphous phase at 480 cm⁻¹, (c) integrated intensity ratio map of (a) and (b) ,
5 respectively; (d) Statistics of integrated intensity ratio from (c).

2 Fig. S4 (a) Typical OES spectrum from a glow discharge of a H_2 -diluted SiCl₄ mixture

3 in a MWPECVD system. (b) The OES intensity ratio of H_β/H_α versus H_2 flow rate.

Fig. S5 (a) XRD pattern, (b) Raman spectrum, (c) FESEM cross-sectional morphology,
(d) cross-sectional BFI image with SAED pattern and corresponding HRTEM images
where images (I) and (II) represent the topmost and the bottom layers, respectively, and
(e) AFM surface topography of the Si channel layer prepared using optimal H₂ flow
rate of 100 sccm to fabricate the film with a thickness of 100 nm.

Species	Emission wavelength (nm)	Transition
Si	251.4	$4s^3P_1^0 \rightarrow 3p^{2}{}^3P_0$
	288.2	$4s^3P_0^0 \rightarrow 3p^{21}S_0$
SiCl	280.9	$B^{\prime 2} \Delta \to X^2 \Pi_r$
	292.4	$B^2 \Sigma^+ \to X^2 \Pi_r$
SiCl ₂	Continuum 310~400	$\mathscr{H}B_{1} \to \mathscr{H}A_{1}$
Н	434.4 (H _γ)	$5d^2D \to 2p^2P^0$
	486.1 (H _β)	$4d^2D \to 2p^2P^0$
	656.3 (H _α)	$3d^2D \rightarrow 2p^2P^0$
H ₂	Continuum 160~500	$2s^{3}\Sigma_{g} \rightarrow 2p^{3}\Sigma_{u}$

Table S1 The definition of the emission lines from OES spectrum of MW glow
 discharge decomposition of H₂-diluted SiCl₄.