Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2015

Supporting information

Phosphors	LLP emission (nm)	LLP duration (h)	references
Li ₂ CaGeO ₄ ,Tb ³⁺	543	1	19
$Ca_{14}Mg_2(SiO_4)_8:Eu^{2+},Dy^{3+}$	523	1	20
Y ₃ Sc ₂ Ga ₃ AlO ₁₂ :Ce ³⁺	495	1-2	21
YTaO ₄ :Tb ³⁺	543	2	22
$Zn_2GeO_4:Mn^{2+}$	528	2	23
ZnS:Cu ⁺	530	3	24-25
$Ca_2SnO_4:Tb^{3+}$	545	3	26
CaS:Sm ³⁺	569	3	27
CaSnO ₃ :Tb ³⁺	543	4	28
CaZnGe ₂ O ₆ :Tb ³⁺	552	4	29
$Mg_2SnO_4:Mn^{2+}$	500	5	30
$Ca_8Mg(SiO_4)_4C_{12}$:Eu ²⁺ ,Nd ³⁺	504	5	31
CdSiO ₃ :Tb ³⁺	540	5	6
SrAl ₂ O ₄ :Ce ³⁺ ,Mn ²⁺	515	5	32
CaAl ₂ O ₄ :Ce ³⁺ ,Mn ²⁺ /Ce ³⁺ ,Tb ³⁺	525 / 543	10	33-34
$Zn_{11}B_8Si_5O_{33}:Mn^{2+}$	525	12	35
Lu ₂ O ₃ :Tb ³⁺ ,Ca ²⁺	543	15	4
Zn_2SiO_4 : Mn^{2+} , Yb^{3+}	523	30	This work

Table S1. Recently reported green LLP phosphors and their LLP performances.

Figure S1. The X-ray diffraction patterns of (a) Zn_2SiO_4 host, (b), (c) Zn_2SiO_4 :Mn²⁺ (d), (e), Zn_2SiO_4 :Mn²⁺,Yb³⁺, and the JCPDS card.

Figure S2. (a) The LLP emission spectra of Zn2SiO4:xMn2+ (x = 0, 0.01%, 0.1%, 0.2%, 0.6%, and 1.0%). (b) The LLP emission spectra of Zn2SiO4:0.2%Mn2+, yYb3+ (b, y = 0, 0.5%, 1.0%, 1.5%, 2.0%, and 2.5%). Both recorded at 30 s after UV irradiation for 60 s.

Figure S3. (a) The UV–Vis absorption spectra of Zn_2SiO_4 host. (b) Plot of $(\alpha hv)^2$ vs photon energy.