Supporting information

4–Diphenylamino–phenyl substituted pyrazine: nonlinear optical switching by protonation

Liang Xu,^{†a} Hai Zhu,^{†b} Guankui Long,^a Jun Zhao,^c Dongsheng Li,^c Rakesh Ganguly,^d Yongxin Li,^d Qing-Hua Xu*^b and Qichun Zhang*^{a,d}

^aSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. Email: qczhang@ntu.edu.sg.

^bDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore. Email: chmxqh@nus.edu.sg

^cCollege of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002, P.R. China

^dDivision of Chemistry and Biological Chemistry, School of Physical and Mathematic Sciences, Nanyang Technological University, Singapore 637371, Singapore.

S1. Experimental

S1.1 Reagents and instruments

Most reagents were purchased from Alfa Aesar or Aldrich and used as supplied unless otherwise noted. All the solvents used in photophysical measurements and electrochemical measurements were of HPLC grade quality. All other solvents were obtained commercially and purified using standard procedures. Silica gel with 200-300 mesh were used in column chromatography, and precoated silica gel plates were utilized in thin-layer chromatography (TLC) and monitored by UV light. SHIMADZU GCMS-QP2010 puls spectrometer was employed in EI mass spectrometric measurements. Bruker Biflex III mass spectrometer was engaged in Matrix-assisted laser desorption/ionization reflectron time-of-flight (MALDI-TOF) mass spectrometer at room temperature (298 K), and chemical shifts were referenced to the residual solvent peaks. Elemental analyses were recorded on a Carlo-Erba-1106 instrument. UV-Vis spectra were performed on a Hitachi U-3010 spectrometer, and Fluorescence emission spectra were monitored using a Hitachi F-4500.

Cyclic voltammetry measurements were monitored on a CHI660D electrochemical workstation (CH Instruments, Austin, TX). A dry weighing bottle was served as the container. The working electrode glassy

carbon (3.0 mm in diameter) was polished on a felt pad with 0.05 μ m alumina (Buehler, Ltd., Lake Bluff, IL), sonicated in deionized water for 2 min, and then dried before usage. The counter electrode platinum wire was rubbed with an abrasive paper, washed with deionized water and acetone, and dried. The reference electrode was platinum wires. Fc⁺/Fc was used as an internal standard. Potentials were recorded versus Fc⁺/Fc in a solution of anhydrous dichloromethane (DCM) with 0.1M tetrabutylammonium hexafluorophosphate (TBAPF₆) as a supporting electrolyte at a scan rate of 50 mV s⁻¹.

S1.2 Synthesis procedures and characterization data for new compounds

Synthesis of compound 2,3-bis(4-diphenylamino-phenyl) quinoxaline (1)

1,2-Diaminobenzene (108 mg, 1.0 mmol) and 4,4'-bis(N,N-diphenylamino)benzil (540 mg, 1.0 mmol) were dissolved in anhydrous acetic acid (50 mL) with catalytic amount of 2-iodoxybenzoic acid (IBX). The solution was refluxed for 24 hours under Argon atmosphere. After that the crude product was concentrated in vacuo and purified by column chromatography (CH₂Cl₂/petroleum ether 1:2), affording compound **1** (554 mg, yield 90%). ¹H NMR (300 MHz, CDCl₃) δ 8.15-8.13 (m, 2 H), 7.74-7.72 (m, 2 H), 7.44 (d, *J* = 9.0 Hz, 4 H), 7.29-7.25 (m, 8 H), 7.13 (d, *J* = 6.0 Hz, 8 H), 7.08-7.03 (m, 8 H)).¹³C NMR (75 MHz, CDCl₃) δ 153.31, 148.71, 147.44, 141.13, 132.55, 130.94, 129.75, 129.50, 129.10, 125.13, 123.61, 122.29. HRMS (M+1) = 617.2708 (calc. 617.2705).

Synthesis of compound 2,3-bis(4-diphenylamino-phenyl)-6,7-dimethylquinoxaline (2)

The procedure was the same with above except that 1,2-Diaminobenzene was replaced by 4,5-Dimethyl-1,2-phenylenediamine (136 mg, 1.0 mmol). This reaction gave compound **2** (592 mg, yield 92%). ¹H NMR (300 MHz, CDCl₃) δ 7.89 (s, 2 H), 7.42 (d, *J* = 6.0 Hz, 4 H), 7.28-7.24 (m, 8 H), 7.12 (d, *J* = 6.0 Hz, 8 H), 7.07-7.02 (m, 8 H), 2.50 (s, 6 H). ¹³C NMR (75 MHz, CDCl₃) δ 152.26, 148.51, 147.49, 140.43, 140.02, 132.75, 130.95, 129.48, 128.07, 125.05, 123.52, 122.40, 20.55. HRMS (M+1) = 645.3003 (calc. 645.3018).

Synthesis of compound 2,3-bis(4-diphenylamino-phenyl)-5,6-(9,10-dioxo-9,10-dihydroanthracenyl)pyrazine (**3**)

The procedure was the same with above except that 4,5-Dimethyl-1,2-phenylenediamine was replaced by 1,2-Diaminoanthraquinone (238 mg, 1.0 mmol). This reaction gave compound **3** (549 mg, yield 89%). ¹H NMR (300 MHz, CDCl₃) δ 8.58 (d, 1 H), 8.41 (d, 1 H), 8.34-8.28 (m, 2 H), 7.86-7.75 (m, 4 H), 7.63 (m, 2 H), 7.33-7.26 (m, 8 H), 7.16 (d, *J* = 9.0 Hz, 8 H), 7.12 (d, *J* = 6.0 Hz, 4 H), 7.08 (d, *J* = 3.0 Hz, 2 H), 7.04 (d, *J* = 3.0 Hz, 2 H). ¹³C NMR (75 MHz, CDCl₃) δ 183.88, 183.64, 154.91, 153.89, 149.72, 149.65, 147.19, 147.12, 142.94, 138.53, 135.34, 135.10, 134.75, 134.58, 133.60, 132.42, 131.53, 130.98, 132.19, 129.61, 129.57, 129.23, 127.50, 126.78, 126.37, 125.58, 125.56, 124.11, 124.00, 121.61, 121.52. HRMS (M+1) = 747.2766 (calc. 747.2760).

¹³C NMR of compound 1 132.55 130.95 129.75 129.75 129.10 129.10 122.13 122.29 ~148.71 ~147.44 -141.13 77.58 77.16 76.74 155 150 145 140 135 130 125 120 115 110 105 100 f1 (ppm)

HRMS of compound 1

Elementa	al Composition	Report	•									Í	Page 1
Single M Tolerance Element p Number of	ass Analysis = 15.0 PPM / D rediction: Off f isotope peaks use	BE: min = -	1.5, max = = 3	50.0									
Monoisotop 1 formula(e Elements U C: 0-44 I C44H32N4 XL-2 3 (0.08)	ic Mass, Even Elect) evaluated with 1 re ised: H: 0-33 N: 0-4 2) Cm (1:8)	tron lons esults within li	imits (up to	50 closest	results for each	ch mass)						1: TOF	MS ES+
100-						61	7.2708					1	.79e+004
%-		616.90	61	100	617 10	617.20	617 30	617.40	617.50	617 60	617 70	617 80	m/z
Minimum:		010.00		-1.5		011.20	011.00	017.40	011.00	017.00	011.70	017.00	
Maximum:		100.0	15.0	50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula					
617.2708	617.2705	0.3	0.5	30.5	32.1	0.0		C44 H33 N4					

¹H NMR of compound 2

¹³C NMR of compound 2

HRMS of compound 2

¹³C NMR of compound 3

183.0	154.5 153.5 149.7 147.1 147.1	142 138 138 138 138 138 138 138 138 138 138	129.6 129.5 129.5 127.5 126.3 126.3 126.3 126.3 126.3 126.3 126.3 126.3 126.3 124.0 124.0 124.0	121.6	77.58
Y	VYY		*********		
		h.			
	an fan fan fan fan fan fan fan fan fan f	an a			
· · · · · · · · · · ·					

lemental	Compo	sition	Report												Page
Single Ma olerance = Element pre	ss Analy 15.0 PP diction: C sotope pe	/sis M / C Off eaks us	DBE: min = - sed for i-FIT	1.5, max = = 3	50.0										
Ionoisotopio formula(e)	Mass, Eve	en Elec with 1 r	tron lons esults within l	imits (up to	50 closest re	esults for eac	ch mass)								
C: 0-52 H: C: 0-52 H: C: 0-53 (0.082)	: 0-35 N Cm (1:36)	: 0-4	O: 0-2												1: TOF MS ES
100-7							74	7.2766							8.26e+0
-															
%-															
74	6.60 7	46.70	746.80	746.90	747.00	747.10	747.20	747.30	747.40	747.50	747.60	747.70	747.80	747.90	748.00
inimum: aximum:			100.0	15.0	-1.5 50.0										
ass	Calc. M	lass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula						
47.2766	747.276	50	0.6	0.8	37.5	30.4	0.0		С52 Н35	N4 02					

S2. Photophysical properties

Figure S2 The UV-Vis and fluorescence spectra of compounds 1-3 upon adding 1000 eq TFA and TEA

S3. Calculation

All the studied compounds 1-3 exhibit aromatic character, and the protonated species (compounds $1(H^+)$, $2(H^+)$ and $3(H^+)$) also keep the aromatic nature. Thus the positive charge mainly de-localized on the quinoxaline (componds 1 and 2) and anthracene-9,10-dione (compound 3) units. This is also consistent with the calculated results. The excess charges upon protonation were analyzed through mulliken population analysis. As shown in Figure S3-1 and Table S3-1, we have summarized the mulliken charges for several important sites with excess positive charges (q>0.3 e).

Figure S3-1 The important sites with excess positive charges (q>0.3 e) after protonation for compounds 1-3

Table S3-1. The important sites with excess positive charges (q>0.3 e) after protonation for compounds 1-3.

sites	23	33	44	50	81
1(H ⁺)	0.304	0.309	0.366	0.302	0.370
sites	23	33	56	50	81
2 (H ⁺)	0.352	0.314	0.340	0.389	0.362
sites	23	42	48	79	93
3 (H ⁺)	0.307	0.316	0.305	0.356	0.461

The Gibbs free energies of protonation was determined at the B3LYP level (Table S3-2)

neutral + CF₃COOH \rightarrow protonated species +anion $\Delta G = \Delta G$ (protonated species)+ ΔG (anion)- ΔG (neutral)- ΔG (CF₃COOH)

			protonated		
∆G /a.u.	Neutral	CF₃COOH	species	Anion	G/kcal/mol
1	-1914.41	-526.77	-1914.80	-526.24	87.89
2	-1993.00	-526.77	-1993.39	-526.24	85.99
3	-2370.86	-526.77	-2371.23	-526.24	103.84

Table S3-2 Gibbs free energies of protonation

S4. NLO devices

The excitation source was a mode-locked Ti-sapphire oscillator-seeded regenerative amplifier (Spectra-Physics), which generates laser pulses centered at 800nm with pulse duration of ~100fs, working at a repetition rate of 1kHz. The laser beam was focused with a focal length of 125mm, producing a beam waist of ~20 μ m. A cuvette with 1mm optical path containing the solution of molecules was mounted on a translational stage (Newport), which moved along the direction of beam propagation in and out of focus. The transmittance of solutions was measured as a function of excitation power density, varying by moving translational stage.

Lock-in amplifier

Figure S4-1 Schematic experimental setup of femtosecond open aperture z-scan measurement

By considering both RSA and SA, the total absorption coefficient is given by:

$$\alpha(I) = \frac{\alpha_0}{1 + I/I_s} + \beta I$$

Where α_0 is the linear absorption coefficient, I_s is saturation intensity, β is nonlinear absorption coefficient. A positive β describes the two photon absorption (2PA) of the molecules, while, β is negative in the case of SA. As shown in the UV-Vis absorption spectra of the compounds 1-3, the linear absorption is rather low, thus the first term is omitted in this work.

The nonlinear absorption coefficient β is determined by the transition dipole moment and the energy offset Δ . In this work, compound 1, 2 and 3 possess a HOMO-LUMO gap of 3.11ev, 3.19ev and 2.12ev, respectively. The HOMO and LUMO of the compounds are the ground state and intermediate state in the energy diagram, respectively. The excitation light generates a virtual state at 1.55ev (corresponding to 800 nm excitation) above the ground state. A smaller Δ value (but $\Delta \neq 0$) would result in a larger nonlinear absorption coefficient and thus 2PA cross section. Compound 3 possesses a smaller Δ (0.57ev) compared to compound 1 and 2 (1.64 and 1.56ev), thus possesses a larger 2PA cross section.

