SUPPORTING INFORMATION

Ratiometric detection of temperature with responsive dualemissive MOF hybrids

You Zhou and Bing Yan*

Shanghai Key Lab of Chemical Assessment and Sustainability, Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, China.

E-mail: byan@tongji.edu.cn.

Figure S1. Typical SEM (a) and TEM (b) images of UiO-bpydc.

Figure S2. Excitation (dash line) and emission (solid line) spectra of H₂bpydc ligand.

Figure S3. Day-to day fluorescence stability of Eu³⁺@UiO-Bpydc solid in air.

Figure S4. Emission spectra (λ_{ex} = 340 nm) of Eu³⁺@UiO-bpydc products resulting from feeding EuCl₃ solution with concentrations in the range of 10⁻⁵-10⁻³ mol L⁻¹.

Figure S5. Temperature-dependent emission spectra ((λ_{ex} = 368 nm) of UiO-bpydc.

Figure S6. Temperature-dependent emission spectra ((λ_{ex} = 395 nm) of EuCl₃.

Figure S7. The luminescence decay times of Eu^{3+} (a) and bpydc emission (b) in $Eu^{3+}@UiO$ -bpydc composite, and bpydc emission in UiO-bpydc (c).

Figure S8. The reversible changes of the normalized emission intensity ratio (I_{530}/I_{614}) of Eu³⁺@UiO-bpydc composite by the alternative thermo-cycles in the range of 293 (red squares) and 353 K (black squares).

Figure S9. a) The PXRD patterns of fresh Eu³⁺@UiO-bpydc composites. The black and blue line represents the fresh one and that after alternative thermos-cycles (293-353 K), respectively. b) The typical SEM image of Eu³⁺@UiO-bpydc after alternative thermos-cycles (293-353 K).

Figure S10. The thermometric sensitivity of $Eu^{3+}@UiO$ -bpydc as a function of temperature.

ΔТ (К)	<i>S</i> _m (% K⁻¹)
50-200	1.15
100-300	3.27
40-300	16
290-320	0.31
283-333	2.81
100-450	0.11
77-225	2.75
293-353	1.28
10-325	5.96
293-353	2.99
	ΔT (K) 50-200 100-300 40-300 290-320 283-333 100-450 77-225 293-353 10-325 293-353

Table S1 Comparison of sensitivity of other reported MOF ratiometric thermometers with ours. Materials, the temperature ranges of operation (Δ T), maximum relative sensitivity values (S_m).

^a Corresponding references.

REFERENCES

- Y. J. Cui, H. Xu, Y. F. Yue, Z. Y. Guo, J. C. Yu, Z. X. Chen, J. K. Gao, Y. Yang, G. D. Qian and B. L. Chen, *J. Am. Chem. Soc.*, 2012, **134**, 3979.
- X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen and G. D. Qian, J. Am. Chem. Soc., 2013, 135, 15559.
- Y. J. Cui, W. F. Zou, R. J. Song, J. C. Yu, W. Q. Zhang, Y. Yang and G. D. Qian, Chem. Commun., 2014, 50, 719.
- A. Cadiau, C. D. S. Brites, P. M. F. J. Costa, R. A. S. Ferreira, J. Rocha and L. D. Carlos, ACS Nano, 2013, 7, 7213.
- 5. Y. Zhou, B. Yan and F. Lei, *Chem. Commun.*, 2014, **50**, 15235.
- 6. Y. Q. Wei, R. J. Sa, Q. H. Li and K. C. Wu, *Dalton Trans.*, 2015, 44, 3067.
- 7. Y. H. Han, C. B. Tian, Q. H. Li and S. W. Du, J. Mater. Chem. C, 2014, **2**, 8065.
- Y. J. Cui, R. J. Song, J. C. Yu , M. Liu., Z. Q. Wang, C. D. Wu, Y. Yang, Z. Y Wang, B.
 L. Chen and G. D. Qian, *Adv. Mater.*, 2015, 27, 1420.
- 9. Z. P. Wang, D. Ananias, A. Carne-Sanchez, C. D. S. Brites, I. Imaz, D. Maspoch, J. Rocha and L. D. Carlos, *Adv. Funct. Mater.*, 2015, **25**, 2824