Nano Molar Detection of Cd(II) Ions by Luminescent Metallo-Supramolecular Polymer Formation

Md. Delwar Hossain,,1,2 Rakesh K. Pandey, ${ }^{1,2}$ Utpal Rana ${ }^{1,2}$ and Masayoshi Higuchi*, ${ }^{*, 2}$
${ }^{1}$ Electronic Functional Materials Group, Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
${ }^{2}$ JST-CREST

Table of Contents

1. Synthetic scheme \& NMR spectra of $\mathbf{L} 2$ S 2
2. Molecular weight measurement S 3
3. Cd-Cd distance in polyCd S 3
4. IR spectra of polyCd and L2-Cd-L2 S 4
5. UV-vis spectra of $\mathbf{L 1}$ and polyCd S 5
6. UV-vis spectra of $\mathbf{L} 2$ and $\mathbf{L} 2-\mathbf{C d}-\mathbf{L} 2$ S 5
7. UV-vis spectral titration in the synthesis of L2-Cd-L2 S 6
8. Binding constants of polyCd and L2-Cd-L2 S 6
9. Emission spectra of $\mathbf{L} 2$ and $\mathbf{L 2} \mathbf{- C d}-\mathbf{L} 2$ S 7
10. Reference S 7

1. Synthetic scheme and NMR spectra of L2

Scheme S1. Synthesis of L2.

Figure S1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{L} \mathbf{2}$.

2. Molecular weight measurement

Molecular weight of metallo-supramolecular polymer ${ }^{[1]}$ was determined by SEC-viscometry-RALLS (size exclusion chromatography-viscometry-right angle light scattering solvent) system consisting of a pump, solvent degasser, liquid chromatograph, refractive index detector, column oven, viscotek 270 dual detector. The eluent was acetonitrile at a flow speed of 1 $\mathrm{mL} / \mathrm{min}$. The column temperature was $30^{\circ} \mathrm{C}$. The synthesized polymers ($\mathrm{c}=1.0 \mathrm{mg} / \mathrm{mL}$) show weight-average molecular weight using polyethylene oxide-PEO-22K as standard, when $20 \mu \mathrm{~L}$ of acetonitrile solution was injected. The molecular weight was obtained by automatic program calculation taking account of viscosity and RALLS factor into consideration. The representative figure of polyCd for molecular weight is shown in Figure S3.

Figure S2. The elution peak of polyCd in SEC-viscometry-RALL in acetonitrile at room temperature.

3. Cd-Cd distance in polyCd

Figure S3. Intermetal distance of Cd ions in polyCd.
4. IR spectra of polyCd and L2-Cd-L2

Figure S4. IR spectrum of polyCd.

Figure S5. IR spectrum of L2-Cd-L2.
5. UV spectra of L1 and polyCd

Figure S6. UV-vis spectra of $\mathbf{L 1}\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and polyCd $\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$.
6. UV spectra of $L 2$ and $L 2-C d-L 2$

Figure S7. UV-vis spectra of $\mathbf{L 2}\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $\mathbf{L} 2$ - $\mathbf{C d}-\mathbf{L} 2\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$.

7. UV-vis spectral titration in the synthesis of L2-Cd-L2

Figure S8. UV-vis spectral changes in the titration of the $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ solution $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{c}=5 \times\right.$ $\left.10^{-4} \mathrm{M}\right)$ to an $\mathbf{L} 2$ solution $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{c}=1.0 \times 10^{-5} \mathrm{M}, l=1 \mathrm{~cm}\right)$ at rt . The arrows indicate the direction of spectral changes. The inset shows the change in abs. at 342 nm as a function of added $\mathrm{Cd}(\mathrm{II})$ salt.

8. Binding constants of polyCd and L2-Cd-L2

Figure S9. Binding constants of polyCd and L2-Cd-L2.

Figure S10. Emission spectra of $\mathbf{L 2}\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $\mathbf{L 2 - C d} \mathbf{- L 2}\left(1 \times 10^{-5} \mathrm{M}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$ at rt .

10. Reference

[1] M. Chiper, M. A. R. Meier, J. M. Johannes, U. S. Schubert, Macromol. Chem. Phys. 2007, 208, 679.

