Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Electrochemically switchable photoluminescence of anionic dye in cationic metallo-supramolecular polymer

Takahiro Suzuki,^a Takashi Sato,^b Jian Zhang,^b Miki Kanao,^b Masayoshi Higuchi,^{*b} Hideyuki Maki^{*a}

^aDepartment of Applied Physics and Physico-Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan

^bElectronic Functional Materials Group, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan

Table of Contents

1. Materials and measurements	S 3
2. FTIR spectra of polyFe, SRB and polyFe-SRB	S 3-4
3. ¹ H-NMR spectra of polyFe, SRB and polyFe-SRB	S 5-8
4. Pictures of a polyFe device	S 9
5. References	S 9

1. Materials and measurements

Unless otherwise noted, all reagents were reagent grade and were used without purification. The IR spectra were taken on a Shimadzu FTIR 8400S Fourier Transform Infrared Spectrophotometer (400-4000 cm⁻¹) with KBr pellets. ¹H-NMR spectra was recorded at 300 MHz on a JEOL AL 300/BZ instrument. Chemical shifts were given relative to TMS.

2. FTIR spectra of polyFe, SRB and polyFe-SRB

FTIR spectra of polyFe, SRB and polyFe-SRB is shown in Fig. S1-S3. In the spectra of polyFe, the bands at 1610, 1584 and 1560 cm⁻¹ corresponding to the C=C and C=N bonds stretching vibration in the ligands, and the band at 793 cm⁻¹ corresponding to the C-C bond between rings in the ligands were observed.¹⁻² The absorption bands in the spectra of SRB were observed as reported in the previous study.³ In the spectra of SRB, the bands at 1597, 1560, 1527, 1508, 1491 and 1468 cm⁻¹ corresponding to aromatic ring vibrations, the bands at 1132 and 669-615 cm⁻¹ corresponding to SO₃⁻, and the band at 1647 cm⁻¹ corresponding to the C-N bond were observed. The spectra of polyFe-SRB was in good agreement with that of SRB because the IR absorption of SRB is stronger than that of polyFe. The noticeable difference of the spectra of polyFe-SRB from that of SRB is the absorption band at 795 cm⁻¹ corresponding to the C-C bonds between rings in the ligands.

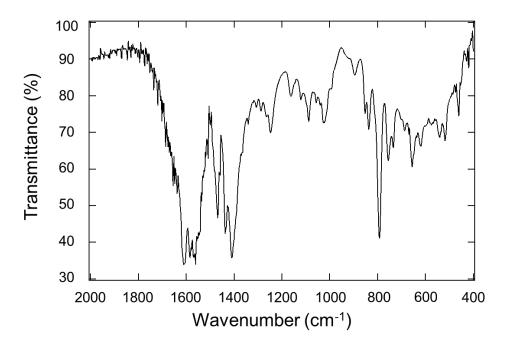


Figure S1. FTIR spectrum of polyFe.

Figure S2. FTIR spectrum of SRB.

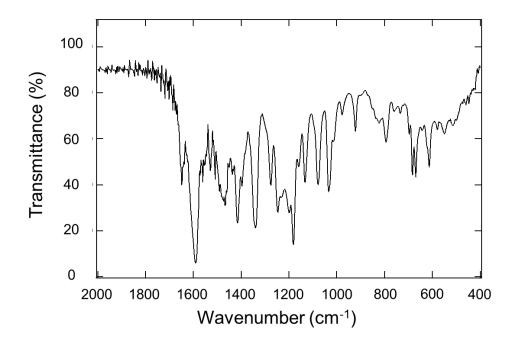


Figure S3. FTIR spectrum of polyFe-SRB.

3. ¹H-NMR spectra of polyFe, SRB and polyFe-SRB

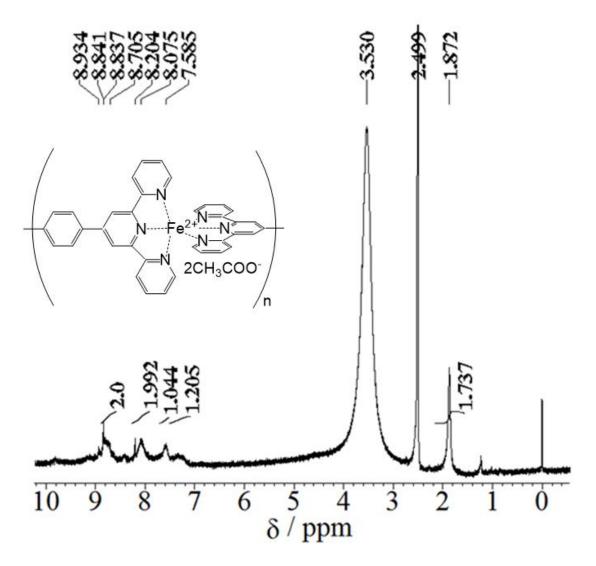


Figure S4. ¹H-NMR spectrum of polyFe.

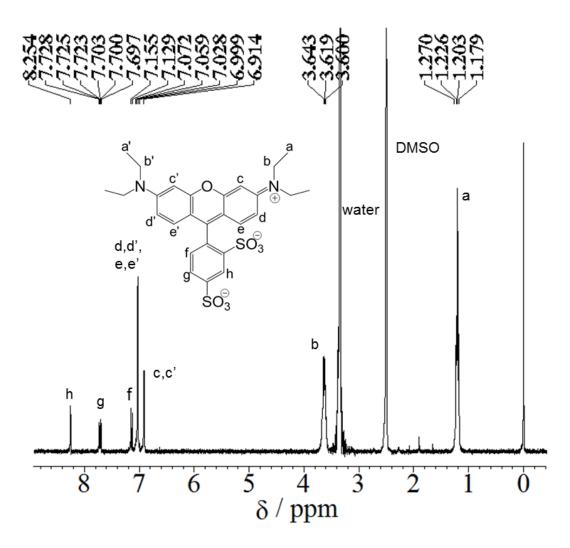


Figure S5. ¹H-NMR spectrum of SRB.

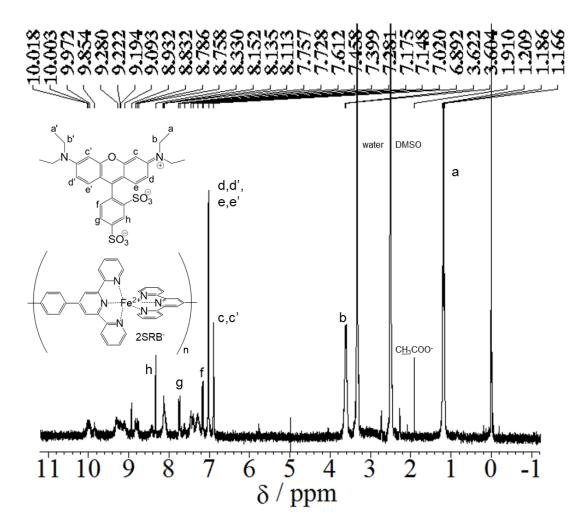


Figure S6. ¹H-NMR spectrum of polyFe-SRB.

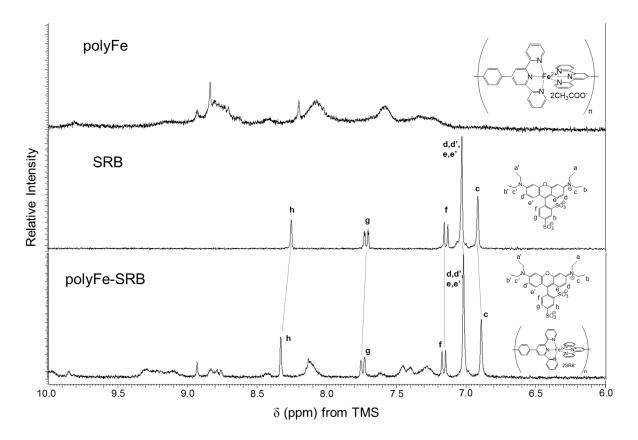
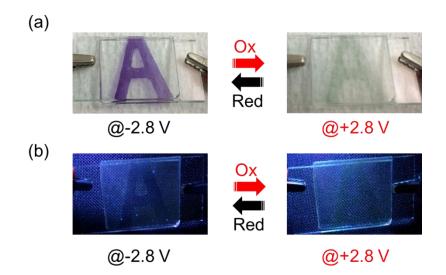



Figure S7. ¹H-NMR spectra (only in the aromatic region) of **polyFe**, SRB and **polyFe**-SRB.

4. Pictures of a polyFe device

Figure S8. (a) Electrochromic change of a device using **polyFe** bearing acetate anions at -2.8 and 2.8 V and (b) pictures of the device under UV light irradiation.

5. Reference

[1] P. Zhang, Y. Wang, H. Liu and Y. Chen, J. Mater. Chem., 2011, 21, 18462

[2] R. López, D. Villagra, G. Ferraudi and S. A. Moya, J. Guerrero, *Inorg. Chim. Acta*, 2004, **357**, 3525.

[3] G. Liu, X. Li and J. Zhao, Environ. Sci. Technol., 2000, 34, 3982.