Supplementary Data

A Novel Approach for Precisely Controlled Multiple Cell Patterning in

Microfluidic Chip by Inkjet Printing and the Study of Drug Metabolism and

Diffusion

Jie Zhang,^a Fengming Chen,^a Ziyi He,^a Yuan Ma,^a Katsumi Uchiyama,^b and Jin-Ming Lin^{a,c,*}

^a Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China

^b Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan

^c Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in University of Shandong, Shandong Normal University, Jinan 250014, China

Chemical transformation schematic of tegafur.

Tegafur was transformed into 5'-hydroxytegafur and then 5-FU in the liver cells by CYP enzyme. 5-FU diffused out from liver cells and got into cancer cells. 5-FU exhibits cytotoxity by incorporation into RNA and DNA after transformed into FUTP or FdUTP respectively, as well as by inhibition of thymidylate synthase.

5-FU: 5-fluorouracil

FUTP: fluorouridine triphosphate

- FdUTP: fluorodeoxyuridine triphosphate
- FdUMP: fluorodeoxyuridine monophosphate

Fig. S1 Chemical transformation schematic of tegafur.

Design and size of the microchip.

Fig. S2 Design of the microchip. (A) size of the microchannel of the PDMS layer; (B) side view of the microchip; (C) real photo of the manufactured microchip.

Influence of alginate sodium solid content.

The viscosity of commonly used alginate sodium for 3D cell culture was relatively too high for electronic inkjet printers, the 1.0% hydrogel drops failed to separate from the nozzle and accumulated at the outlet, while 0.5% alginate drops could be ejected smoothly.

Fig. S3 Inkjet printing of different solid content alginate sodium: (A) 1.0%; (B) 0.5%.

Influence of glass surface.

Contact angle of alginate sodium on glass slides became smaller along with the increase of hydrophilicity.

Fig. S4 Contact angle of alginate sodium on glass slides of different hydrophilic-hydrophobic property.

Co-patterning of two kinds of cells.

Two kinds of cells stained with different color were co-patterned in a cross way.

Fig. S5 Co-patterning of two kinds of cells.

Gelation of alginate sodium.

After printing of cells and integration with a PDMS layer. 100 mM CaCl₂ dissolved in 1640 cell culture medium was injected into the microchip for the alginate gelation. Then normal 1640 cell culture medium was inject into the microchip to replace CaCl₂ solution. **Fig. S6** showed the situation before and after hydrogel gelation.

Fig. S6 Inkjet printing alginate hydrogel drops (A) (B), and the situation after gelation (C) (D).

Cell proliferation in alginate.

The cells kept good viability cultured in alginate hydrogel in the microchip and cell clusters were observed.

Fig. S7 Cell proliferation in alginate hydrogel of HepG2 (A) cells and U251 (B) cells, and an Live/Dead assay comparison (C) (D).

Cells just printed and after culture

Images of cells just printed and after a period of culture.

Fig. S8 Cells just printed (A) and after a period of culture (B).

Drug metabolism experiment

Supplementary figure of **Fig. 5** with separate colour channels indicating live cells and dead cells stained by Live/Dead assay kit.

Fig. S9 Live/Dead staining assay of HepG2-U251 co-culture system with different tegafur concentrations, with 3D images and separate colour channels;

Diffusion equation

Here we adopted Fick's law of diffusion and used the software Comsol to simulate the diffusion situation.

In the Fick's law equations used here:

$$\frac{\partial c_j}{\partial t} + \nabla \cdot (-D_j \nabla c_j) + \mathbf{u} \cdot \nabla c_j = R_j$$

$$\mathbf{N}_{j} = -D_{j}\nabla c_{j} + \mathbf{u}c_{j}$$

The meaning of the parameters are: for species *j*, c_j is the concentration, *t* is time, D_j is diffusion coefficient, **u** is direction vector, R_i is diffusion flux, N_i is the molar flux.

And here the diffusion coefficient was set as 5×10^{-6} cm²/s approximatively according to the molecular weight of tegafur. And the calculation was processed by the software.