Modular calibrant sets for the structural analysis of nucleic acids by ion mobility spectrometry mass spectrometry

Jennifer L. Lippens, Srivathsan Ranganathan, Rebecca J. D'Esposito, and Daniele Fabris

Supporting Material

Table 1S. Name, sequence, and mass of single-stranded (ss) and double-stranded (ds) species employed to generate calibration sets. Species marked with \blacklozenge were used exclusively as ss calibrants, whereas those marked with \ast were combined with the respective complementary strand (not shown) to form a duplex construct of corresponding length. Average masses are reported.

Name	Sequence (5' → 3')	ss mass (u)	ds mass (u)
6mer [◆] *	Deeccog	1793.4	3586.4
14b [◆] *	GTTAAGTCGTATTA	4292.9	8523.7
18b*	AAGAAGGTAACGAGTAGG	5645.7	10997.2
22b*	TCAGAAGAAGGTAACGAGTAGG	6881.5	13468.8
24b [◆] *	TATCAGAAGAAGGTAACGAGTAGG	7498.9	14703.6
32b [◆] *	TTAAACAGTATCAGAAGAAGGTAACGAGTAGG	9978.6	19644.9
48b [◆] *	TTAAACAGTAGGAAGAAAGAGGGAAGTTATAATAATGTAACGAGTAGG	15117.9	29531.3
64b [◆] *	TTAAACAGGAGAACACAATTCAGATAGGAAGAAGAGGGAAGTCAGAAGAAGGTAACGAGT- AGG	20087.1	39415.6
80b [◆]	TTAAACAGGAGAACACAATTATAGTAAGACCACAGGCAGATAGGAAGAAGAGGGAAGTCA- GAAGAAGGTAACGAGTAGG	25072.4	N/A
96b [◆]	TTAAACAGGAGAACACAATTATAGTAAGACCACAGGCAGATAGGAAGAAGAGGGAAGTCA- GAAATCAAACATGAAGTAGGAAGGTAACGAGTAGG	30056.6	N/A

Table 2S. Comparison of CCS values obtained from the EHSS and TJM algorithms for five ds constructs in the study. Each value is the average and relative standard deviation (RSD%) obtained from 20 configurations along the simulation trajectory. A relative deviation (Δ %) was calculated between corresponding EHSS and TJM values. An average RMSD of ±3.9% was calculated from the various Δ %, which decreased to ±0.7% upon exclusion of the 14a:b species. Uncertainty regarding the conformation of this species in the gas phase may be the source of its high Δ % (see **Results and Discussion**).

_							
	Duplex	z	CCS _{EHSS} (Å ²) ±RSD%	CCS _{TJM} (Å ²) ±RSD%	Δ%	RMSD	
	(6mer) ₂	3	496.9 ± 1.0%	491.3 ± 1.0%	-1.1%		
	10a:b	5	775.8 ± 1.9%	767.7 ± 1.7%	-1.1%		
	14a:b	5	967.0 ± 1.4%	1162.5 ± 1.3%	+16.8%	±3.9%	
	18a:b	6	1405.1 ± 0.8%	1398.8 ± 1.3%	-0.4%		
	22a:b	7	1791.8 ± 0.6%	1790.2 ± 0.9%	-0.1%		

Table 35. Comparison of CCS values obtained by the EHSS method in either He or N₂ (EHSS_{He} and EHSS_{N2}, respectively) for the calibrant sets in this study. An average RMSD of $\pm 3.4\%$ was obtained from corresponding values, which indicated a negligible difference between the two datasets. The fact that the ss series displayed a larger RMSD than the ds counterpart (i.e., $\pm 4.9\%$ versus $\pm 1.5\%$) could be explained by intrinsic errors associated with modeling structures devoid of well-defined secondary structure.

Species	z	CCS EHSS _{He} (Å ²) ±RSD%	CCS EHSS _{N2} (Å ²) ±RSD%	Δ%	RMSD
6mer	3	321.6 ± 1.1%	322.9 ± 1.1%	-0.4%	
14b	4	685.2 ± 1.9%	743.7 ± 5.7%	-7.9%	
24b 4		991.5 ± 1.6%	992.1 ± 1.9%	-0.1%	
	5	1127.1 ± 1.0%	1000.6 ± 0.9%	+12.6%	
32b	5	1221.3 ± 1.8%	1217.8 ± 1.6%	+0.3%	14.00/
	6	1411.5 ± 1.2%	1367.9 ± 0.5%	+3.2%	±4.9%
48b	7	1919.4 ± 0.5%	1869.7 ± 1.3%	+2.7%	
64b	8	2528.1 ± 1.1%	2507.9 ± 0.6%	+0.8%	
80b	9	2865.0 ± 0.6%	2868.3 ± 0.6%	-0.1%	
96b	10	3524.2 ± 0.7%	3505.1 ± 0.6%	+0.5%	
(6mer) ₂	3	497.2 ± 1.0%	496.9 ± 1.0%	+0.1%	
14a:b	5	913.7 ± 0.9%	967.0 ± 1.4%	-5.5%	
18a:b	6	1402.7 ± 0.7%	1405.1 ± 0.8%	-0.2%	
22a:b 7		1796.5 ± 0.7%	1791.8 ± 0.6%	+0.3%	
	8	1750.6 ± 1.7%	1746.5 ± 1.4%	+0.2%	
24a:b	7	1872.4 ± 0.8%	1868.4 ± 0.5%	+0.2%	
32a:b	8	2445.1 ± 1.1%	2446.2 ± 1.0%	<0.1%	±1.5%
	9	$2430.1 \pm 0.4\%$	2432.5 ± 0.4%	-0.1%	
48a:b	10	3625.4 ± 0.3%	3623.7 ± 0.4%	<0.1%	
	11	3660.6 ± 0.5%	3668.8 ± 0.4%	-0.2%	
64a:b	12	4651.0 ± 0.5%	4654.8 ± 0.7%	-0.1%	
	13	4804.2 ± 0.7%	4810.8 ± 0.7%	-0.1%	
	14	4909.4 ± 0.4%	4908.0 ± 0.7%	<0.1%	

Species	z	CCS _{EHSS} (Å ²) ±RSD%	Literature CCS (Å ²)	Δ%	RMSD
gc14 (dsDNA)	7	1049.5 ± 0.7%	1016	+3.3%	
gc18 (dsDNA)	9	1245.8 ± 0.5%	1254	-0.7%	
mix26 (dsDNA)	13	2145.0 ± 0.9%	2035	+5.4%	±4.5%
10dT (ssDNA)	3	486.1 ± 2.2%	452	+7.5%	
16nt hairpin	4	630.0 ± 0.4%	620	+1.6%	

Table 4S. Comparison of EHSS CCS values obtained in this study and reported in previous publications. The individual Δ % values were greater for the larger ds construct and the unconstrained ss species, which again point towards possible deficiencies in their gas-phase models.

Table 5S. Name, sequence, and mass of test samples employed to evaluate the various calibration curves. Species marked with * were combined with the respective complementary strand (not shown) to form a duplex construct of corresponding length. Species marked with • were used exclusively as ss samples. Average masses are reported.

Name	Sequence $(5' \rightarrow 3')$	ss mass (u)	ds mass (u)
10b*	ວວລວລວລວ	N/A	6060.0
16b [◆]	GAAGGTAACGAGTAGG	5019.3	N/A
30a*◆	GTATTCCGTAGTTCAAATTGCATACTGGAG	9326.0	18472.0
36a*	CCTACTCGTTACCTTCTTGACTTCCCTCTTTCTT	N/A	21572.0
56a*◆	GAGAACACAATTCAGATAGGAAGAAGAGGGAAGTCAGAAGAAGGTAACGAGTAGG	16866.9	33733.8
70b [♦]	TTAAACAGGAGAACACAATTATAGTAAGACCACAGGCAGATAGGAAGAAGAGGGAAGTCAGAAGAAGGT	21909.3	N/A
16hp	TGCGATACTCATCGCA	4841.2	
28hp	GCGTTCATCAGAGTCATCTGATGAACGC	8588.6	N/A
36hp	GCTATCCAAGTCTTGCTCGAGCAAGACTTGGATAGC		N/A
48hp	GGTTCTCTGGTTAGCCAGAGAGCTGACTCTCTGGCTAACTAGAGAACC	14783.6	

Figure 1S. Calibration curves obtained by including all detected charge states. The curves correlate experimental t_D data with the corresponding reference values provided by either the EHSS (\blacksquare) or PSA (\blacklozenge) algorithm.