Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

ChemDraw files as follows:

21 nutritional compositions

	R ₁	R ₂
PC(36:5)	C ₁₅ H ₃₁	C ₁₉ H ₂₉
PC(36:4)	C ₁₅ H ₃₁	C ₁₉ H ₃₁
PC(34:2)	C ₁₅ H ₃₁	C ₁₇ H ₃₁
PC(36:3)	C ₁₅ H ₃₁	C ₁₉ H ₃₃
PC(36:2)	C ₁₇ H ₃₅	C ₁₇ H ₃₁
PC(34:1)	C ₁₅ H ₃₁	C ₁₇ H ₃₃

The fragmentation patterns of phospholipids

The fragmentation patterns of tocopherols

The fragmentation patterns of tocotrienols

 β -Carotene

The fragmentation patterns of β -carotene

The fragmentation patterns of γ -oryzanol (1)

The fragmentation patterns of γ -oryzanols (2)

R ₁	R ₂
C ₁₀ H ₉ O ₄	C ₈ H ₁₅
C ₁₀ H ₉ O ₄	C ₈ H ₁₇
C ₁₀ H ₉ O ₄	C ₉ H ₁₇

The fragmentation patterns of γ -oryzanols (3)

The source files of ChemDraw as follows:

21 nutritional compositions.cdx

The fragmentation patterns of phospholipids.cdx

The fragmentation patterns of tocopherols.cdx

The fragmentation patterns of tocotrienols.cdx

The fragmentation patterns of $\beta\text{-carotene.cdx}$

The fragmentation patterns of γ -oryzanol(1).cdx

The fragmentation patterns of γ -oryzanols(2).cdx

The fragmentation patterns of γ -oryzanols(3).cdx

Figures A.1-A.3 as follows:

Figure A.1. The basic chemical structures of 21 nutrients in rice.

Figure A.2. Recoveries of nutritional compounds extracted by ultrasonication,

oscillation and vorticity methods in white rice.

Figure A.3. The separation of chromatographic columns: PFP and C18 columns.

Figure A.4. The optimization of elution system (A: methanol-10 mM ammonium acetate, B: methanol-10mM ammonium formate, C: methanol-0.1% acetic acid, D:

methanol-0.1% formic acid).

Figure A.5. The molecular peaks of vitamin E with non-ionization in the ESI source.

Figure A.6. The fragmentation patterns of tocopherols.

Figure A.7. The fragmentation patterns of tocotrienols.

Figure A.8. The fragmentation patterns of phospholipids.

Figure A.9. The fragmentation patterns of γ -oryzanols.

Figure A.10. The fragmentation patterns of β -carotene.

Table A.1-A.3 as follows:

					-			
NO.	Tr (min)	Ion mode	Measured	Calculated	Mass error Fragment ion information (MS/MS)		Molecular	Compounds
			mass (m/z)	mass (m/z)	(ppm)		formula	
1	7.54	$[M+H]^{+}$	431.38901	431.38836	1.5	MS: 205(98%),165(100%)	$C_{29}H_{50}O_2$	α-Τ
2	7.20	$[M+H]^{+}$	417.37314	417.37271	1.0	MS: 191(30%),151(100%)	$C_{28}H_{48}O_2$	β-Τ
3	6.99	$[M+H]^{+}$	417.37268	417.37271	-0.1	MS: 191(26%),151(100%)	$C_{28}H_{48}O_2$	r-T
4	6.58	$[M+H]^{+}$	403.35754	403.35706	1.2	MS: 191(100%),177(64%),163(70%)	$C_{27}H_{46}O_2$	δ-Τ
5	6.37	$[M+H]^{+}$	425.34219	425.34141	1.8	MS: 199(100%),151(62%)	$C_{29}H_{44}O_2$	α-Τ3
6	6.12	$[M+H]^{+}$	411.32599	411.32576	0.6	MS: 205(34%),191(100%),151(89%)	$\mathrm{C}_{28}\mathrm{H}_{42}\mathrm{O}_2$	β-Τ3
7	5.92	$[M+H]^{+}$	411.32553	411.32576	-0.6	MS: 205(36%),191(100%),151(96%)	$C_{28}H_{42}O_2$	r-T3
8	5.6	$[M+H]^{+}$	397.31000	397.31011	-0.3	MS: 201(100%),187(69%)	$C_{27}H_{40}O_2$	δ-Τ3
9	6.46	$[M+H]^{+}$	780.55267	780.55378	-1.4	MS: 597(100%)	C44H78O8NP	PC(36:5)
10	6.71	$[M+H]^+$	782.56976	782.56943	0.4	MS: 599(100%)	$\mathrm{C}_{44}\mathrm{H}_{80}\mathrm{O}_8\mathrm{NP}$	PC(36:4)
11	6.89	$[M+H]^{+}$	758.56946	758.56943	0.0	MS: 575(100%)	$\mathrm{C}_{42}\mathrm{H}_{80}\mathrm{O}_8\mathrm{NP}$	PC(34:2)
12	7.03	$[M+H]^{+}$	784.58569	784.58508	0.8	MS: 601(100%)	$\mathrm{C}_{44}\mathrm{H}_{82}\mathrm{O}_8\mathrm{NP}$	PC(36:3)
13	7.45	$[M+H]^+$	786.60077	786.60073	0.1	MS: 603(100%)	$\mathrm{C}_{44}\mathrm{H}_{84}\mathrm{O}_8\mathrm{NP}$	PC(36:2)
14	7.24	$[M+H]^{+}$	760.58508	760.58508	0.0	MS: 577(100%)	$\mathrm{C}_{42}\mathrm{H}_{82}\mathrm{O}_8\mathrm{NP}$	PC(34:1)
		[M-						cycloartenyl
15	9.85	$C_{10}H_{10}O_4 + H]^+$	409.38351	409.38288	1.5	MS: 299(57%),217(100%),203(57%)	$C_{40}H_{48}O_4$	ferulate
								24-
								methylency
		[M-						cloartanylfe
16	10.25	$C_{10}H_{10}O_4+H]^+$	423.39978	423.39853	3.0	MS: 299(100%),217(83%)	$C_{41}H_{60}O_4$	rulate
		[M-						campesteryl
17	10.35	$C_{10}H_{10}O_4 + H]^+$	383.36765	383.36723	1.1	MS: 297(59%),189(100%)	$C_{38}H_{56}O_4$	ferulate
								β-
		[M-						sitosterylfer
18	10.66	$C_{10}H_{10}O_4 + H]^+$	397.38303	397.38288	0.4	MS: 299(35%),243(100%),203(52%)	$C_{39}H_{58}O_4$	ulate
		[M-						cycloartanyl
19	10.51	$C_{10}H_{10}O_4 + H]^+$	411.39905	411.39853	1.3	MS: 299(68%),217(100%),203(96%)	$C_{40}H_{60}O_4$	ferulate
		[M-						campestanyl
20	10.79	$C_{10}H_{10}O_4+H]^+$	385.38300	385.38288	0.3	MS: 263(69%),201(100%)	$C_{38}H_{58}O_4$	ferulate
21	12.12	$[M+H]^{+}$	537.44653	537.44548	2.0	MS: 480(65%),440(100%),412(80%)	$C_{40}H_{56}$	β-carotene

Table A.1 Identification of 21 components using UHPLC-LTQ-Orbitrap MS.

		Table A.2 F	Recoveries yielded				
	R% (n=3)						
Compounds	White rice			Brown rice			
_	High level	Medium level	Lower level	High level	Medium level	Lower level	
α-Τ	90.7	91.0	90.7	99.2	91.1	99.4	
β-Τ	94.9	97.7	81.4	91.9	97.9	96.4	
γ-Τ	92.0	98.8	89.7	94.8	98.8	92.2	
δ-Τ	92.1	97.1	99.4	87.7	98.2	97.2	
α-Τ3	82.5	95.7	83.7	84.9	95.8	94.1	
β-Τ3	97.6	94.9	98.4	93.4	96.9	89.8	
γ-Τ3	82.8	90.8	97.7	84.8	94.1	94.5	
δ-Τ3	88.8	91.4	92.0	86.1	92.4	93.2	
PC(36:5)	86.6	83.3	99.9	95.8	96.8	98.8	
PC(36:4)	98.2	87.6	96.1	96.1	90.9	84.9	
PC(34:2)	80.6	83.7	94.7	84.3	84.5	97.8	
PC(36:3)	92.9	98.7	87.1	96.7	98.7	90.0	
PC(36:2)	90.0	96.1	91.7	85.6	83.6	99.1	
PC(34:1)	109.6	104	105.3	106.7	103	101.9	
cycloartenylferulate	94.6	97.7	99.5	93.7	93.1	95.0	
24-methylencycloartanylferulate	97.0	85.9	85.9	97.1	87.6	95.8	
campesterylferulate	95.2	98.1	93.5	87.4	89.2	98.3	
β -sitosterylferulate	90.9	86.5	94.3	92.5	97.7	96.2	
cycloartanylferulate	90.3	97.7	93.7	91.5	94.8	92.2	
campestanylferulate	93.2	87.6	86.2	95.4	90.4	97.5	
β-carotene	86.3	97.3	83.2	99.0	81.1	83.5	

Table A.2 Recoveries vielded

		Single	Predicted Group Membership					
		Linkage	1	2	3	4	5	Total
Original	Count	1	6	0	0	0	0	6
		2	0	6	0	0	0	6
		3	0	0	6	0	0	6
		4	0	0	0	6	0	6
		5	0	0	0	0	6	6
	(%)a	1	100.0	.0	.0	.0	.0	100.0
		2	.0	100.0	.0	.0	.0	100.0
		3	.0	.0	100.0	.0	.0	100.0
		4	.0	.0	.0	100.0	.0	100.0
		5	.0	.0	.0	.0	100.0	100.0

 Table A.3 Classification results of the discriminant analysis.

^a 100.0% of original grouped cases correctly classified.