Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

Facile synthesis of highly SERS active nanosilver sol with microwave and its application to detect *E. coli* using Vicrtoria blue B as molecular probe

Yaohui Wang, Xinghui Zhang, Guiqing Wen, Aihui Liang* and Zhiliang Jiang*

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Normal University, Guilin 541004, China

Fig. S1 TEM of the AgNPs using diethanolamine as a reductant

Fig. S2 SPR absorption spectra of the AgNRs (a) 0.5 μg/ml AgNPs; (b) 1 μg/ml AgNPs; (c) 2 μg/ml AgNPs; (d) 3 μg/ml AgNPs; (e) 4 μg/ml AgNPs; (f) 5 μg/ml AgNPs

Fig. S3 RRS spectra of AgNRs

(a) 0.5 µg/ml AgNPs; (b) 1 µg/ml AgNPs; (c) 2 µg/ml AgNPs; (d) 3 µg/ml AgNPs; (e) 4 µg/ml AgNPs; (f) 5 µg/ml AgNPs

(a) 2 μg/mL AgNPs+0.25 μmol/L VBB +pH 6.8 PBS+1.5 mmol/L NaCl; (b) 3 μg/mL AgNPs+0.25 μmol/L VBB +0.25 mol/L NaCl; (c) 4 μg/mL AgNPs+0.25 μmol/L VBB +0.25 mol/L NaCl; (d) 5 μg/mL AgNPs+0.25 μmol/L VBB +0.25 mol/L NaCl; (e) 6 μg/mL
 AgNPs+0.25 μmol/L VBB +0.25 mol/L VBB +0.25 mol/L NaCl.

Fig. S5 SERS spectra of VBB, VB4R, AR and ST stained *E. coli*. a: 5 μ g/mL AgNPs-1.5×10⁻³ mol/L NaCl-0.01 μ g/mL AgNO₃-pH 6.8 PBS-5.0×10⁸ cfu/ml VBB-*E. coli*; b: 5 μ g/mL AgNPs-1.5×10⁻³ mol/L NaCl-pH 6.8 PBS-5.0×10⁸ cfu/mL VB4R-*E. coli*; c: 5 μ g/mL AgNPs-1.5×10⁻³ mol/L NaCl-pH 6.8 PBS-5.0×10⁸ cfu/mL AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10⁻³ mol/L AgNPs-1.5×10³ mol/L AgNPs-1.5×10³ mol/L AgNPs-1.5×10³ mol/L AgNP

Fig S6 SERS spectra of VBB-B. subtilis

a: 5 μg/mL AgNPs-2 μmol/L AgNO₃–1.5×10⁻³ mol/L NaCl-0.01 μg/mL AgNO₃-pH 6.8 PBS; b: a-1.25×10⁸/mL *B. subtilis*; c: a-2.5×10⁸/mL *B. subtilis*; d: a-3.75×10⁸/mL *B. subtilis*.

Fig. S7 SERS spectra of VBB-S. aureus

a: 5 μ g/mL AgNPs -2 μ mol/L AgNO₃-1.5×10⁻³ mol/L NaCl-0.01 μ g/mL AgNO₃-pH 6.8 PBS; b: a-4.8×10⁴/mL *S. aureus*; c: a-9.6×10⁴/mL *S. aureus*; d: a-14.4×10⁴/mL *S. aureus*.

Wavelength/nm

Fig. S8 RRS spectra of B. subtilis

a: 1×10^8 /mL *B. subtilis*; b: 2×10^8 /mL *B. subtilis*; c: 4×10^8 /mL *B. subtilis*; d: 8×10^8 /mL *B. subtilis*; e: 16×10^8 /mL *B. subtilis*; f: 24×10^8 /mL *B. subtilis*; g: 32×10^8 /mL *B. subtilis*.

Wavelength/nm Fig. S9 RRS spectra of *S. aureus*

a: 0.65×10⁵/mL *S. aureus*; b: 1.3×10⁵/mL *S. aureus*; c: 2.6×10⁵/mL *S. aureus*; d: 5.2×10⁵/mL *S. aureus*; e: 10.4×10⁵/mL *S. aureus*; f: 15.6×10⁵/mL *S. aureus*; g: 20.8×10⁵/mL *S. aureus*.

Fig. S10 RRS spectra of VBB- *E. coli*. a: 1.5×10⁸ cfu/mL VBB-*E. coli*; b: 3.0×10⁸ cfu/mL VBB-*E. coli*; c: 6.0×10⁸ cfu/mL VBB-*E. coli*; d: 12×10⁸ cfu/mL VBB-*E. coli*; e: 24×10⁸ cfu/mL VBB-*E. coli*; f: 36×10⁸ cfu/mL VBB-*E. coli*.

Wavelength/nm
Fig. S11 RRS spectra of VBB- *B. subtilis*

a:water; b: 1.25×10⁸/mL VBB-*B. subtilis*; c: 2.5×10⁸/mL VBB-*B. subtilis*; d: 5×10⁸/mL VBB-*B. subtilis*; e: 10×10⁸/mL VBB-*B. subtilis*; f: 20×10⁸/mL VBB-*B. subtilis*; g: 30×10⁸/mL VBB-*B. subtilis*; h: 40×10⁸/mL VBB-*B. subtilis*.

Wavelength/nm

Fig. S12 RRS spectra of VBB- S. aureus

a: water; b: 0.32×10⁵/mL VBB-*S. aureus*; c: 0.65×10⁵/mL VBB-*S. aureus*; d: 1.3×10⁵/mL VBB-*S. aureus*; e: 2.6×10⁵/mL VBB-*S. aureus*; f: 5.2×10⁵/mL VBB-*S. aureus*; g: 7.8×10⁵/mL VBB-*S. Aureus*; h: 10.4×10⁵/mL VBB-*S. aureus*.

Fig.S13 RRS spectra of AgNPs-NaCl-VBB-*E. coli*. a: 5 μ g/mL AgNRs-1.5×10⁻³ mol/L NaCl-0.01 μ g/mL AgNO₃-pH 6.8 PBS; b: a+1.0×10⁸ cfu/mL VBB-*E. coli*; c: a+2.0×10⁸ cfu/mL VBB-*E. coli*; d: a+4.0×10⁸ cfu/mL VBB-*E. coli*; e: a+8.0×10⁸ cfu/mL VBB-*E. coli*; f: a+12×10⁸ cfu/mL VBB-*E. coli*; g: a+16×10⁸ cfu/mL VBB-*E. coli*.

Wavelength/nm

Fig. S14 RRS spectra of AgNPs-NaCl-AgNO₃-VBB- S. aureus

a: 5 μg/mL AgNPs –1.5×10⁻³ mol/L NaCl-0.01 μg/mL AgNO₃-pH 6.8 PBS; b: a- 1.6×10⁵/mL VBB-*S. aureus*; c: a- 3.2×10⁵/mL VBB-*S. aureus*; d: a- 4.8×10⁵/mL VBB-*S. aureus*; e: a-6.4×10⁵/mL VBB-*S. aureus*; f: a- 8.0×10⁵/mL VBB-*S. aureus*; g: a- 9.6×10⁵/mL VBB-*S. au*; g: a- 9.6×10⁵/mL VBB-*S*; g:

Wavelength/nm

Fig. S15 RRS spectra of AgNPs-NaCl-VBB- B. subtilis

a: 5 μg/mL AgNPs –1.5×10⁻³ mol/L NaCl-0.01 μg/mL AgNO₃-pH 6.8 PBS; b:a- 1.25×10⁸/mL *B. subtilis*; c: a- 2.5×10⁸/mL *B. subtilis*; d: a- 3.75×10⁸/mL *B. subtilis*; e: a- 5.0×10⁸/mL *B. subtilis*; f: a- 6.25×10⁸/mL *B. subtilis*; g: a- 7.5×10⁸/mL *B. subtilis*.

Fig. S16 Absorption spectra E. coli

a: 1.5×10⁹/mL *E. coli*; b: 3.0×10⁹/mL *E. coli*; c: 4.5×10⁹/mL *E. coli*; d: 6.0×10⁹/mL *E. coli*; e: 7.5×10⁹/mL *E. coli*; f: 9.0×10⁹/mL *E. coli*; f: 9.0×10⁹/mL *E. coli*; c: 4.5×10⁹/mL *E. coli*; d: 6.0×10⁹/mL *E. coli*; e: 7.5×10⁹/mL *E. coli*; f: 9.0×10⁹/mL

Fig. S17 Absorption spectra of VBB- *E. coli*. a: 0.6×10⁹ cfu/mL VBB-*E. coli*; b: 1.2×10⁹ cfu/mL VBB-*E. coli*; c: 2.4×10⁹ cfu/mL VBB-*E. coli*; d: 3.6×10⁹ cfu/mL VBB-*E. coli*; e: 4.8×10⁹ cfu/mL VBB-*E. coli*; f: 6.0×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; d: 3.6×10⁹ cfu/mL VBB-*E. coli*; f: 6.0×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; d: 3.6×10⁹ cfu/mL VBB-*E. coli*; f: 6.0×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; d: 3.6×10⁹ cfu/mL VBB-*E. coli*; f: 6.0×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; d: 3.6×10⁹ cfu/mL VBB-*E. coli*; g: 7.2×10⁹ cfu/mL VBB-*E. coli*; g:

Fig. S18 Optical micrographs of E.coli

Fig. S19 Optical micrographs of aureus

a: S. aureus; b:VBB-S. aureus

Fig. S20 Optical micrographs of subtilis

a: B. subtilis; b: VBB-B. subtilis

Fig. S21 Laser scattering diagram of AgNPs-NaCl-AgNO₃-VBB-E. coli

a: 5 μg/mL AgNPs-1.5×10⁻³ mol/L NaCl -1 μmol/mL AgNO₃-pH 6.8 PBS; b:a- 7.5×10⁸/mL VBB-*E. coli*; c:a-3×10⁹/mL VBB-*E. coli*.

time/min
Fig. S22 Effect of staining time in staining process (*E. coli*)

time/min

Fig. S23 Effect of staining time in staining process (S. aureus)

Fig. S24 Effect of staining time in staining process (B. subtilis)

 $$\mu mol/L$$ Fig. S25 Effect of VBB concentration in staining process

Fig. S26 Effect of pH NaAc-HAc buffer solution in staining process

Fig.S27 Effect of AgNPs concentration in detecting process

mM Fig. S28 Effect of NaCl concentration in detecting process

рН

Fig. S29 Effect of pH PBS buffer solution in detecting process

Days	1	2	3	5	7	10	13	18	23	28	33	38
A _{444 nm}	0.192	0.189	0.197	0.184	0.185	0.200	0.195	0.187	0.199	0.210	0.229	0.236
I _{1611 cm-1}	2520	2666	2519	2681	2395	2473	2510	2600	2629	2467	2903	1936

Table S1 Stability of AgNRs

Molecular probes	Peak positions/ intensity	Vibration mode	Structure
	198 m	Skeletal	
	150 11	bending	
	432 w	υ(C=N), υ(C=C)	
	6//w	γ(CH)	
	793 m	γ(C-C) Aromatics	
		υ(C-C)	
	1165 s	Aromatics, δ	Cr.
VBB		(CH)	
	1199 s	$\delta(CH), \delta(CH_3)$	
	1304 \$	$U(C-N), O(CH_3)$	
	1392 VS		
	1445 m	δ(circle)	
	1562 m	δ(CH)	
	1611 vs	u(C=N), $u(N-H)$	
		Skeletal	
	214 m	bending	
	431 w	δ(CH)	
	676 w	γ(CH)	
	797 m	γ(C-C)	
		Aromatics	
	1167 s	Aromatics, δ	
VB4R		(CH)	ď
	1200 s	δ(CH), δ(CH ₃)	
	1374 s	υ(C-N), δ(CH ₃)	_N_
	1385 vs	CH in	
	1444 m	δ (CH ₂)	
	1565 s	υ(C=N), υ(N-H)	
	1611 vs	υ(C=N), υ(C=C)	
	188 w	Skeletal	
	100 W	bending	
	431 s	δ(CH)	
	679 m	γ(CH) γ(C-C)	
	795 s	Aromatics	
ST		υ(C-C)	
	1167 s	Aromatics, δ	11214 14 14112
	1200 c		cr
	1200 S	$U(C_{-}N) = \delta(CH_{3})$	
	1300 s	$CH in \delta(CH)(C=C)$	×
	1613 vs	u(C=N), u(C=C)	
	205	Skeletal	
	205 m	bending	
	492 m	γ(CH) σ(C-Cl)	~ ~ ^
4.0	749 m	v(circle)	
АК	1321 s	$\delta(CH_2)$	H ₃ C-N-CH ₃ CI-
	1368 vs	u(C-C)Aromatics	
	1484 m	δ(NH)	
	1642 m	υ(C-C)Aromatics	

Table S2 Assignment of SERS peaks different for molecular probes in AgNPs sol

 σ :stretching vibration; δ :bending vibration; δ :symmetric bending vibration;v(circle):ring breathing; δ (circle):inner surface deformation of the ring; γ (CH):outside surface deformation of CH; γ (circle):outer surface deformation; ρ —rocking, in plane bending; γ —wagging

	Table S3 SERS inter	nsity of VBB and VBB- <i>E. coli</i> i	molecular probe	
Raman shift (cm ⁻¹)	Intensity (VBB)	SERS intensity ratio of the $I_{1611 \text{ cm} - 1}$	Intensity (VBB- sbacteria)	SERS intensity ratio of the $I_{1611 \text{ cm} - 1}$
198	370	0.40	429	0.44
432	349	0.38	354	0.36
677	261	0.28	376	0.38
793	316	0.34	558	0.57
1165	481	0.52	876	0.89
1199	454	0.49	834	0.85
1364	487	0.53	800	0.81
1392	652	0.71	936	0.95
1611	920	1.00	983	1.00

Raman Intesity: vs: very strong; s: strong; m: medium; w: weak.

Table S4SERS intensity of dyes

Dyes	Max intensity (cm ⁻¹)	Dyes	Max intensity (cm ⁻¹)
VBB	1084 (1611)	Crystal violet	328 (796)
VB4R	989 (1611)	Orange II	40 (1390)
SafranineT	276 (1613)	Rhodamine B	60 (616)
Peafowl green	68 (612)	Indigo blue	57 (1619)
Basic orange	50 (1379)	Acridine red	197 (1368)

Table S5 SERS effect comparison of different silver nanoparticles

Silver nanoparticles *	Sensitizer	Probe	I _{1611cm-1}
Spherical	NaCl, AgNO ₃	VBB	441
Triangle	NaCl, AgNO ₃	VBB	756
AgNPs	NaCl, AgNO ₃	VBB	1149
AgNPs/0.001% GO	NaCl, AgNO ₃	VBB	757
AgNPs/0.002% GO	AgNO ₃	VBB	365

The Ag concentration of nanoparticles was 5 μ g/mL, NaCl: 1.5×10⁻³ mol/L, AgNO₃: 0.01 μ g/mL, VBB: 1.0×10⁻⁶ mol/L

Tolerance	Relative error	Coexistent	Tolerance	Relative error
Tolerance	Relative error	COCNISTCHT	Tolerance	Relative error
concentration	(%)	substance	concentration	(%)
0.8 mmol/L	5.0	Br⁻	0.8 mmol/L	4.0
0.5 mmol/L	3.3	F-	1.0 mmol/L	6.2
0.6 mmol/L	-4.0	NO ₃ -	0.4 mmol/L	-5.0
0.4 mmol/L	-5.0	CIO ₄ -	0.6 mmol/L	4.5
0.3 mmol/L	4.6	CO32-	0.5 mmol/L	5.6
0.7 mmol/L	3.0	SO4 ²⁻	0.8 mmol/L	-2.8
5.0×10 ⁷ cfu/mL	9.0	S. aureus	1.5×10 ⁹ cfu/mL	9.0
	concentration 0.8 mmol/L 0.5 mmol/L 0.6 mmol/L 0.4 mmol/L 0.3 mmol/L 0.7 mmol/L 5.0×10 ⁷ cfu/mL	concentration (%) 0.8 mmol/L 5.0 0.5 mmol/L 3.3 0.6 mmol/L -4.0 0.4 mmol/L -5.0 0.3 mmol/L 4.6 0.7 mmol/L 3.0 5.0×10 ⁷ cfu/mL 9.0	concentration (%) substance 0.8 mmol/L 5.0 Br ⁻ 0.5 mmol/L 3.3 F ⁻ 0.6 mmol/L -4.0 NO ₃ ⁻ 0.4 mmol/L -5.0 ClO ₄ ⁻ 0.3 mmol/L 4.6 CO ₃ ²⁻ 0.7 mmol/L 3.0 SO ₄ ²⁻ 5.0×10 ⁷ cfu/mL 9.0 S. aureus	concentration (%) substance concentration 0.8 mmol/L 5.0 Br ⁻ 0.8 mmol/L 0.5 mmol/L 3.3 F ⁻ 1.0 mmol/L 0.6 mmol/L -4.0 NO ₃ ⁻ 0.4 mmol/L 0.4 mmol/L -5.0 ClO ₄ ⁻ 0.6 mmol/L 0.3 mmol/L 4.6 CO ₃ ²⁻ 0.5 mmol/L 0.7 mmol/L 3.0 SO ₄ ²⁻ 0.8 mmol/L 5.0×10 ⁷ cfu/mL 9.0 S. aureus 1.5×10 ⁹ cfu/mL

 Table S6 Effect of foreign substances in detecting progress (5.0×10⁸ cfu/mL E. coli)

 Table S7 Analytical characteristic of detecting B. subtilis

Methods	System	LR(cfu/mL)	Regress equation	R ²	DL(cfu/mL)
SERS	AgNPs-NaCl-VBB-B. subtilis	3×10 ⁶ -2×10 ⁹	ΔI ₁₆₁₁ =206.5c+18.5	0.9982	1×10 ⁶
	Unstained B. subtilis	5×10 ⁶ -6×10 ⁹	ΔI ₂₉₅ =266.4c+311.6	0.9968	2×10 ⁶
RRS	VBB-B. subtilis	6×10 ⁶ -5×10 ⁹	ΔI ₂₉₅ =193.4c+286.8	0.9942	2×10 ⁶
	AgNPs-NaCl- VBB-B. subtilis	6×10 ⁶ -1.5×10 ⁹	ΔI ₃₄₀ =550.6c+107.8	0.9879	2×10 ⁶

 Table S8 Analytical characteristic of detecting S. aureus

Methods	System	LR(cfu/mL)	Regress equation	R ²	DL(cfu/mL)
SERS	AgNPs-VBB-S. aureus	1×10 ³ -2×10 ⁶ cfu/mL	ΔI ₁₆₁₁ =62.5c+5.0	0.9998	1×10 ³ cfu/mL
	Unstained S. aureus	3×10 ³ -3×10 ⁶ cfu/mL	ΔI ₂₉₅ =34.8c+312.6	0.9957	2×10 ³ cfu/mL
RRS	VBB-S. aureus	2×10 ³ -2×10 ⁶ cfu/mL	ΔI ₂₉₅ =54.2c+117.4	0.9975	2×10 ⁶ cfu/mL
	AgNPs- VBB-S. aureus	3×10 ³ -4×10 ⁶ cfu/mL	ΔI ₃₄₀ =28.9c+37.1	0.9955	2×10 ⁶ cfu/mL

Methods	Principle	Liner range cfu/mL	DL	Comment	Refs
PCR	Utilized multiplex PCR		2×10 ⁴ cfu/mL	Classic, but long process	24
ELISA	An indirect ELISA method was used to detect the presence of pathogenic bacteria in vegetables		10³ cfu/g	Good selectivity, but complex procedure	25
Nucleic acid aptamer analysis	Obtained a panel of ssDNA aptamers specific against <i>S. aureus</i> by the subtractive SELEX, and demonstrated a superior effect of the combined use of these aptamers compared to an individual aptamer in the recognition of different strains of <i>S. aureus</i> or cells in different growth states. Aureus aptamer was immobilized on streptavidin coated			Good selectivity, but complex procedure.	26
Voltammetry	magnetic beads (MB), which serves as a capture probe. A secondary anti- <i>S. aureus</i> aptamer was conjugated to silver nanoparticles that sensitively reports the detection of the target. In the presence of target bacterium, an Apt/S.aureus/apt-AgNP sandwich complex is formed on the MB surface and the electrochemical signal of AgNPs followed through anodic stripping voltammetry.	10 - 1×10 ⁶ cfu/mL	1 cfu/mL	Sensitivity, but complex procedure.	27
Biosensor	Rapid detection and quantification of <i>E. coli</i> O157:H7 in meat and water samples based on the electrocatalytic properties of AuNP towards hydrogen evolution reaction and superparamagnetic microbeads as pre- concentration/purification platforms without the need of broth enrichment is developed for the first time.	100 - 1×10 ⁵ cfu/mL	309 cfu/mL	Sensitivity, but complex princeple.	28
VBB-bacteria SERS	In the AgNPs substrate, VBB-bacteria have a strong SERS peak at 1611 cm ⁻¹ . The SERS signal is increased with the increased concentration of VBB-bacteria in a certain range.	10-700 cfu/mL	10 cfu/mL	Sensitive, simple, and rapid.	This method

Table S9 Comparison of different analytical methods for the detection of bacteria

Table S10 VBB-bacteria SERS intensity of different culture time

c(E.coli)							
	0	10	50	100	300	500	700
Т							
6h	-	-	-	-	-	-	-
6h 9h	-	-	-	-	-	-	- 199