Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2016

Supporting information for

Label-free SERRS-basednanosensor for ultrasensitive detection of mercury ions in drinking water and wastewater effluent

Dan Song¹, Rong Yang¹, Haoyu Wang¹, Wei Li¹, Hongchen Wang¹, Hui Long², Feng Long^{1*}

¹School of Environment and Natural Resources, Renmin University of China, 100872, Beijing ²Institute of Product Quality Inspection, Guangxi Zhuang Autonomous Region

*Corresponding author:longf04@ruc.edu.cn

Figure S1. SEM and TEM image of Fe₃O₄@Ag magnetic beads

Figure S2 Magnetic hysteresis curves of Fe₃O₄,Fe₃O₄@ SiO₂-Au seed, and Fe₃O₄@ SiO₂@Ag at 300 K

Figure S3. The effect of incubation time between MG and $Fe_3O_4@Ag$ on the SERS intensity of MG.

Figure S4. Effect of pH on the SERRS intensity of MG (10^{-5} mol/L).

Figure S5. Replicate SERS spectra of MG system in the presence of Hg^{2+} with concentration of 10^{-8} mol/L(A) and 10^{-6} mol/L(B) .

