Supporting Information

PGMA-based gene carriers with lipid molecules

Chen Xu,^{a,b,c,#} Bingran Yu,^{a,b,c,#} Hao Hu,^{a,b,c} Muhammad Naeem Nizam,^{a,b,c} Wei

Yuan,^{d,*} Jie Ma,^d and Fu-Jian Xu^{a,b,c,*}

^aState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology (BUCT), Beijing 100029 China

^bKey Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China

^cBeijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 China

^dState Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China

[#]Both authors contributed equally to this work.

*To whom all correspondence should be addressed:

E-mail: xufj@mail.buct.edu.cn (F J Xu), yuanwei7568@163.com (W. Yuan)

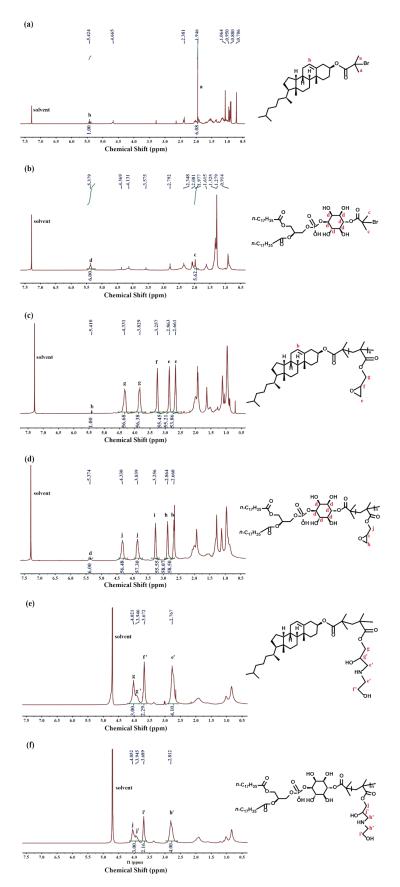
Samples	Volume of GMA (mL)	$M_n(g\!/mol)^d$	PDI ^d	Monomer repeat units per chain	
CHO-PGMA1 ^a	1.73	4.60×10^{3}	1.21	28 ^e	25 ^h
CHO-PGMA2 ^a	3.46	8.80×10^3	1.23	58 ^e	56 ^h
CHO-PGMA3 ^a	5.19	1.35×10^4	1.30	92 ^e	90 ^h
PI-PGMA1 ^b	0.91	4.50×10^{3}	1.31	24^{f}	27 ^h
PI-PGMA2 ^b	1.82	9.10×10^{3}	1.21	57 ^f	56 ^h
PI-PGMA3 ^b	2.73	1.48×10^4	1.22	97^{f}	94 ^h
PGMA1 ^c	3.20	4.70×10^{3}	1.22	32 ^g	
PGMA2 ^c	6.40	9.75×10^{3}	1.21	68 ^g	

Table S1 Characterization of polymers.

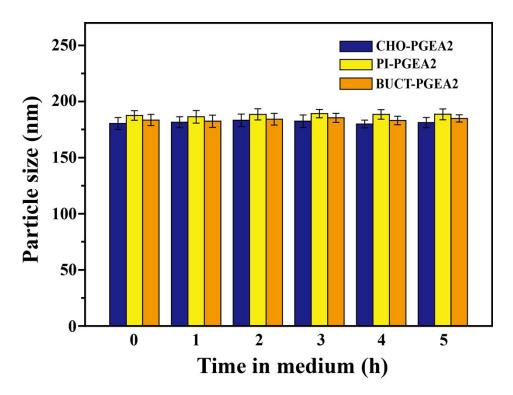
^aSynthesized using a molar feed ratio [CHO-Br (200 mg, 0.37 mmol)]/[CuBr (53 mg, 0.37 mmol)]/[PMDETA (193 μ L, 0.93 mmol)] of 1:1:2.5 in 5 mL of DMSO containing different amounts of GMA for 30 min.

^bSynthesized using a molar feed ratio [PI-Br (200 mg, 0.18 mmol)]/[CuBr (26 mg, 0.18 mmol)]/[PMDETA (94 μL, 0.45 mmol)] of 1:1:2.5 in 5 mL of DMSO containing different amounts of GMA for 30 min.

°Synthesized using a molar feed ratio [ethyl 2-bromoisobutyrate (100 μ L, 0.67 mmol)]/[CuBr (96 mg, 0.67 mmol)]/[PMDETA (349 μ L, 1.67 mmol)] of 1:1:2.5 in 5 mL of DMSO containing different amounts of GMA for 30 min.


^dDetermined from GPC results. PDI=weight average molecular weight/number average molecular weight, or M_w/M_n .

^eDetermined from M_n and the molecular weights of CHO-Br(536 g/mol) and GMA (142g/mol).


^fDetermined from M_n and the molecular weights of PI-Br(1097 g/mol) and GMA (142g/mol).

^gDetermined from M_n and the molecular weights of ethyl 2-bromoisobutyrate (195 g/mol) and GMA (142g/mol).

^hDetermined from the ¹H NMR data.

Fig. S1 ¹H NMR spectra of the (a) CHO-Br, (b) PI-Br, (c) CHO-PGMA2, (d) PI-PGMA2, (e) CHO-PGEA2 and (f) PI-PGEA2.

Fig. S2 Particle size stabilities of the CHO-PGEA2/pDNA, PI-PGEA2/pDNA and BUCT-PGEA2/pDNA at the N/P ratio 20 in medium with 10% FBS.