Electronic Supporting Information

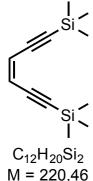
[18]Annulene put into new perspective

Dominik Lungerich,^a Alexey V. Nizovtsev,^b Frank W. Heinemann,^b Frank Hampel,^a Karsten Meyer,^b George Majetich,^c Paul v. R. Schleyer,^c and Norbert Jux^{*a}

^a*Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM), Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr.42, 91054 Erlangen (Germany). ^b Department Chemie und Pharmazie, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen (Germany).

^c Department of Chemistry, University of Georgia, 140 Cedar St, Athens GA 30602 (USA).

Table of Content


1.	General information	S2
2.	Experimental procedures	S 3
	(3Z)-1,6-Trimethylsilyl-hexa-3-ene-1,5-diyne (6)	\$3
	1,3,7,9,13,15-Hexadehydro-[18]annulene (5)	S4
	[18]Annulene (1)	S5
3.	Additional experimental results	S 6
	Coupling of TMS-acetylene and 1,2-dichloroethene to (3Z)-1,6-trimethylsilyl-	
	hexa-3-ene-1,5-diyne	S6
	Deprotection of (3Z)-1,6-trimethylsilyl-hexa-3-ene-1,5-diyne and coupling to	
	hexadehydro[18]annulene	S7
	Oxidative coupling to hexadehydro[18]annulene by variation of the Cu-system	S7
	Synthesis of [18]annulene by variation of the reductive system	S8
4.	X-ray data of hexadehydro[18]annulene	S 9
5.	References	S9
6.	Spectra of all compounds (Uv/vis, NMR, HRMS)	S10

1. General information

All chemicals were purchased from Sigma-Aldrich and used without any further purification. Solvents were distilled prior to usage. CH₂Cl₂, CHCl₃ and EtOAc were distilled from K₂CO₃ prior to usage. THF and benzene were freshly distilled from Na/benzophenone prior to usage. Thin layer chromatography (TLC) was performed on Merck silica gel 60 F254, detected by UV-light (254 nm, 366 nm). Column chromatography and flash column chromatography were performed on Macherey-Nagel silica gel 60 M (230-400 mesh, 0.04-0.063 mm). NMR spectroscopy was performed on JEOL JNM EX 400 (¹H: 400 MHz, ¹³C: 100 MHz) and JEOL JNM GX 400 (¹H: 400 MHz, ¹³C: 100 MHz), and Bruker Avance 400 (¹H: 400 MHz, ¹³C: 100 MHz). Deuterated solvents were purchased from Sigma Aldrich and used as received. Chemical shifts are referenced to residual protic impurities in the solvents (CHCl₃: ¹H: 7.24 ppm; C₂H₂Cl₄: ¹H: 5.98 ppm; THF: ¹H: 3.57 ppm and 1.73 ppm) or the deuterated solvent itself (CDCl₃: 13 C: 77.0 ppm; C₂D₂Cl₄: ¹³C: 73.7 ppm; THF-D₈: ¹³C: 67.3 ppm and 25.2 ppm). The resonance multiplicities are indicated as "s" (singlet), "d" (doublet), and "m" (multiplet). Signals referred to as bs (broad singlet) are not clearly resolved or significantly broadened. IR spectra were recorded on a Bruker FT- IR Tensor 27 spectrometer with a Pike MIRacle ATR unit. LDI/MALDI-ToF mass spectrometry was performed on a Shimazu AXIMA Confidence (nitrogen laser, 50 Hz, 337 nm). In case of MALDI, the following matrix was used: 2,5-dihydroxybenzoic acid (DHB). High resolution mass spectrometry was performed on a ESI-ToF mass spectrometer Bruker maXis 4G UHR MS/MS spectrometer. Uv/vis spectroscopy was carried out on a Varian Cary 5000 UV-Vis-NIR spectrometer. Solid state Uv/vis was performed on a quartz glass light path window. Unless otherwise noted, reactions were degassed by the following technique: The reaction mixture was sonicated at 25 °C for 1 min under vacuo, followed by a purge with N₂gas. This cycle was repeated three times.

2. Experimental procedures

(3Z)-1,6-Trimethylsilyl-hexa-3-ene-1,5-diyne (6)

A 100 mL Schlenk round-bottom flask, protected from light, was charged with 337 mg (470 μ mol; 2 mol%) Pd(PPh₃)₂Cl₂, 183 mg (960 μ mol; 4 mol%) Cul and dissolved in a mixture of 12.0 mL *n*-butylamine and 35.0 mL benzene. The mixture was degassed and then 2.33 g (24.0 mmol) *cis*-1,2-dichloroethene was added. A solution of 5.19 g (52.8 mmol, 2.2 equiv.) trimethylsilylethyne in 10.0 mL benzene was added within 6 h by means of a PLASTIC syringe (20 mL) and a syringe pump. The reaction mixture was stirred at rt under N₂-atmosphere over night for 15 h. The red solution was quenched with 40 mL of a saturated aqueous NH₄Cl solution, the layers were separated, the aqueous layer was extracted 3x 20 mL Et₂O, the combined organics were washed 1x 20 mL saturated solution of NH₄Cl, 1x 20 mL H₂O and 1x 20 mL brine. The crude

solution was dried with MgSO₄, filtered, evaporated (100 mbar, 40 °C) and purified by liquid chromatography (SiO₂; 4x25 cm; hexanes). The pale yellow oil was dried in vacuo, yielding the product in 90 % (4.76 g; 21.4 mmol).

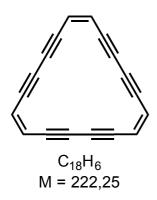
Attention: In order to prevent cis/trans isomerization, the product should be stored in darkness at 4 °C. Over a period of several months, no decomposition or isomerization was observed under these conditions.

Rf (solvent): 0.35 (hexanes);

¹H NMR (400 MHz; CDCl₃; rt): δ [ppm] = 5.83 (s, 2H), 0.20 (s, 9H).

¹³C NMR (100 MHz; CDCl₃; rt): δ [ppm] = 120.6, 103.4, 101.8, -0.1.

MS (MALDI, DHB): *m/z* (*rel. int.*) = 221 [M]⁺ (100).


HRMS (APPI, toluene): *m*/*z* calc. for C₁₂H₂₀Si₂ [M]⁺: 220.109805, found: 220.110259.

IR (ATR, rt): $\tilde{\sigma}$ [cm⁻¹] = 3044, 2960, 2900, 2156, 2122, 1680, 1568, 1408, 1387, 1249, 1069, 976, 836, 758, 699, 634.

Uv/vis (*n*-hexane; rt): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 273 (20600), 289 (23300).

EA for C₁₂H₂₀Si₂: Calc.: C 65.38, H 9.14, Si 25.48; found: C 65.36, H 9.10;

1,3,7,9,13,15-Hexadehydro-[18]annulene (5)

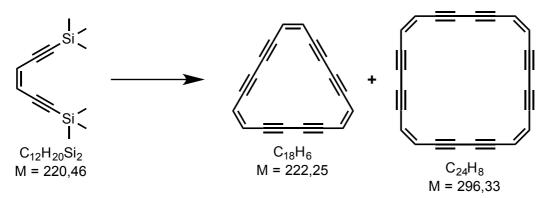
A 100 mL Schlenk round-bottom flask, protected from light, was charged with 50.0 mL (50.0 mmol) of a 1 M TBAF/ THF solution at 0 °C under N₂-atmosphere. While stirring, 5.00 g (22.7 mmol) (3*Z*)-1,6-trimethylsilyl-hexa-3-ene-1,5-diyne were added neat via syringe over 2 min. The mixture turned black immediately and was stirred for 1 h. Then the mixture was cannulated to a 1 L round bottom flask equipped with a rubber septum and containing a vigorously stirred mixture of 30.0 g (150 mmol) Cu(OAc)₂·H₂O in 500 mL pyridine. The dark blue pyridine/Cu-mixture turned black immediately. The mixture was allowed to stir in darkness at rt for another 20 h, before

it was quenched by pouring the mixture to a 600 mL mixture of 1:1 $Et_2O/2$ M HCl and stirred well for 15 min. The organic layer was separated. The aqueous layer was filtered through a Büchner funnel and the precipitate was washed with 150 mL Et_2O . The organic layer was separated again and all organics were combined. Additional Et_2O was added to give 500 mL of organics. The combined organics were washed with 4x 200 mL 1:1 saturated $CuSO_4/H_2O$ solution, 1x 50 mL saturated NH₄Cl solution, 1x 50 mL brine and dried over Na₂SO₄ to yield a light brown solution. The solution was concentrated in vacuo and purified by liquid chromatograpy (SiO₂; 6x30 cm; 20:1 hexane/ EtOAc). The amber solid was dried in vacuo, yielding the product in 24 % (404 mg; 1.82 mmol).

Attention: While concentrating the solution on the rotary evaporator, do not exceed a temperature of over 35 °C. When precipitation in the flask occurs, further evaporation should be proceeded with an oil pump around 0 °C to prevent decomposition. The product is best stored in a frozen solution of benzene under argon atmosphere in the freezer. In the solid state, rapid decomposition can be observed.

R_f (solvent): 0.23 (20:1 hexanes/EtOAc);

¹H NMR (400 MHz; C₂D₂Cl₄; rt): δ [ppm] = 7.20 (s, 6H).


¹³C NMR (100 MHz; $C_2D_2Cl_4$; rt): δ [ppm] = 121.5, 83.5, 83.2.

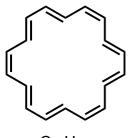
HRMS (APPI, toluene): *m*/*z* calc. for C₁₈H₆ [M]⁺: 222.046402, found: 222.046492.

IR (ATR, rt): $\tilde{\sigma}$ [cm⁻¹] = 3057, 2186, 2113, 1841, 1654, 1472, 1417, 1272, 1185, 951, 732.

Uv/vis (hexanes; rt): λ_{max} [nm] = 319sh, 334, 358, 368sh, 379, 389.

Uv/vis (cyclohexane; rt): λ_{max} [nm] (ε [M⁻¹cm⁻¹]) = 227 (25500), 236 (21500), 260 (5900), 315 sh (41000), 317 (41500), 333 (75800), 357 (13000), 366 (7400), 378 (15500), 388 (17600), 405 sh (790).¹

As **minor product**, cyclic tetramer ($C_{24}H_8$) was formed in 5 %.²


R_f (solvent): 0.12 (20:1 hexanes/EtOAc);

¹H NMR (400 MHz; C₂D₂Cl₄; rt): δ [ppm] = 6.07 (s, 8H).

¹³C NMR (100 MHz; $C_2D_2Cl_4$; rt): δ [ppm] = 121.4, 82.7, 82.6.

HRMS (APPI, MeOH): *m*/*z* calc. for C₂₄H₈[M]⁺: 296.062052, found: 296.061979.

[18]Annulene (1)

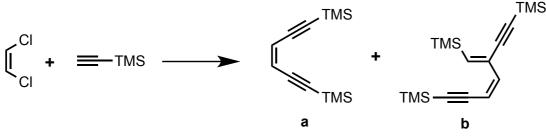
C₁₈H₁₈ M = 234,34 A 100 mL Schlenk round-bottom flask, was charged with 25 mg 5 % Pd/CO₃/Pb (Lindlar catalyst) and poisoned with 1 drop quinoline. The catalyst was suspended in 25 mL benzene and 60 mg (0.27 mmol) hexadehydro[18]annulene was added. The mixture was degassed under vacuo/ sonication for 1 min and the atmosphere was exchanged by H₂-gas. The mixture was stirred at rt under H₂-atmosphere for 1 h. The yellow greenish mixture was filtered, concentrated in vacuo, and purified by liquid chromatography (SiO₂ 2x20 cm; 23:1:1 pentane/cyclohexane/benzene). The brownish solid was dried in vacuo, yielding the product in 20 % (13 mg; 54 μ mol).

R_f (solvent): 0.42 (20:1 hexanes/EtOAc);

¹H NMR (400 MHz; THF-D₈; rt): δ [ppm] = 8.88 (bs, 12H), -1.92 (bs, 6H).

¹H NMR (400 MHz; THF-D₈; –40 °C): δ [ppm] = 9.24 (dd, 12H), -2.83 (m, 6H).

¹³C NMR (100 MHz; THF-D₈; -40 °C): δ [ppm] = 127.8, 121.5.


HRMS (APPI, toluene): *m*/*z* calc. for C₁₈H₁₈ [M]⁺: 234.140302, found: 234.140542.

IR (ATR, rt): $\tilde{\sigma}$ [cm⁻¹] = 3057, 2186, 2113, 1841, 1654, 1472, 1417, 1272, 1185, 951, 732.

Uv/vis (CH₂Cl₂; rt): λ_{max} [nm] = 275 (300000), 454 (25000).

3. Additional experimental results

Coupling of TMS-acetylene and 1,2-dichloroethene to (3*Z*)-1,6-trimethylsilylhexa-3-ene-1,5-diyne

Scheme S1 Synthesis of 1,6-di-(trimethylsilyl)-hex-3-en-1,5-diyne a.

Overall procedure: catalyst and copper (I) iodide were placed in a Schlenk flask (50 ml). Solution of *cis*-1,2-dichloroethylene (776 mg, 8.0 mmol) and *n*-butylamine (4.0 mL) in benzene (4 mL) was added and the rest of material was washed from the vial with benzene (5 mL). The reaction vessel was closed with a fresh rubber septum and degassed. The reaction flask was isolated from day light by aluminum foil and a solution of TMS-ethyne in benzene (5 mL) was added during 6 h by means of a PLASTIC syringe (10 mL) and a syringe pump at rt. The reaction mixture was stirred for additional 17 h. The resulted dark red solution with large amount of precipitates was poured into a saturated solution of NH_4Cl (20 mL) and diethyl ether (20 mL). The organic layer was separated and the dark blue aqueous layer was extracted with diethyl ether (3x10 mL). The combined organics were washed with a saturated aqueous solution of NH₄Cl (10 mL), brine (2x10 mL), dried over MgSO₄, filtered and evaporated in vacuo (100 mbar, 40°C) to give a dark red oil. This oil was redissolved in hexanes (40 mL), filtered and evaporated in vacuo (100 mbar, 40 °C) to give the crude product as a dark red oil, which was analyzed by ¹H NMR. All mixtures contained only compounds **a** and, presumably, **b** by ¹H NMR data. Monochloro-compound was NOT detected in any reaction mixtures. Identification of **b** was assigned only by NMR data and literature search.³ Results of experiments are summarized in the Table 1.

N	TMS-ethyne, equiv.	Catalyst	Catalyst, [mol%]	Copper (I) iodide, [mol%]	Ratio a:b (by ¹ H NMR data)
1	2.5	Pd(PPh ₃) ₄	5	10	57 : 43
2	2.5	PdCl ₂ (PPh ₃) ₂	5	10	60 : 40
3 ^a	3.0	PdCl ₂ (PPh ₃) ₂	5	10	74 : 26
4	3.0	PdCl ₂ (PPh ₃) ₂	5	10	81 : 19
5	2.2	PdCl ₂ (PPh ₃) ₂	5	10	98 : 2
6 ^b	2.2	PdCl ₂ (PPh ₃) ₂	2	4	98 : 2

Table S1 Synthesis of 1,6-di-(trimethylsilyl)-hex-3-en-1,5-diyne a.

a - septum was not fresh; b - the reaction was done without protection from day light.

Deprotection of (3*Z*)-1,6-trimethylsilyl-hexa-3-ene-1,5-diyne and coupling to hexadehydro[18]annulene

Scheme S2 Improvement of deprotection of c to d by variation of fluoride sources.

<u>Overall procedure</u>: Deprotecting agent was placed in a Schlenk flask (50 mL) and dissolved in 25 mL THF. Then 2.50 g (11.3 mmol) (3*Z*)-1,6-trimethylsilyl-hexa-3-ene-1,5-diyne **c** was added neat over 1 min. The reaction mixture was stirred for 3 h at rt and then cannulated to a mixture of $Cu(OAc)_2$ ·H₂O/pyridine. The quality of the deprotection was estimated by the isolated yield of hexadehydro[18]annulene **e**. A summary can be found in table S2.

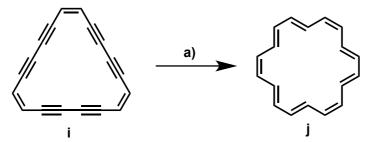
Ν	F- source	Additional reagent/ solvent	Isolated yield of e [%]
1	CsF	H ₂ O	16
2	KF	H ₂ O	11
3	KF	10% 18-crown-6, H ₂ O	18
4	HF/pyridine		9
5 ^a			9
6 ^b	TBAF		19
7 ^c	TBAF		24

Table S2 Improvement of deprotection of c to d by variation of fluoride sources.

a – protected enediyne c was directly introduced to $Cu(OAc)_2H_2O/pyridine mixture$. Deprotection occurred by Cu-mixture; b – stirred for 30 min; c – stirred for 1 h at 0 °C under N₂-atmosphere.

Oxidative coupling to hexadehydro[18]annulene by variation of the Cusystem

Scheme S3 Improvement of the oxidative coupling to **h** by variation of the Cu-system.

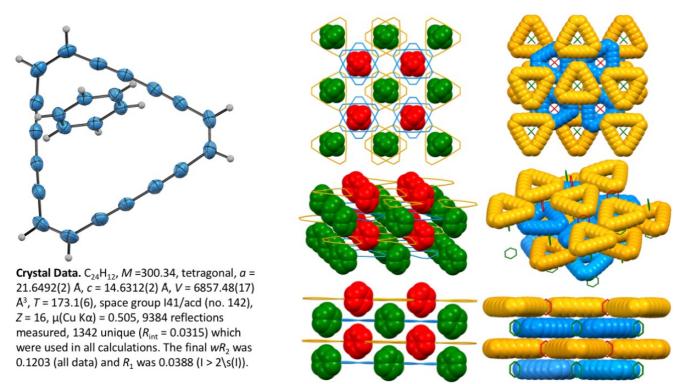

<u>Overall procedure</u>: 300 mg (1.36 mmol) (3*Z*)-1,6-trimethylsilyl-hexa-3-ene-1,5-diyne **f** was deprotected by TBAF/THF at 0 °C for 1 h. The reaction mixture containing **g**, was cannulated to a mixture of the Cu-system. A summary can be found in table S3.

N	Cu-system	Virtual molarity of g in Cu-system [M]	Isolated yield of h [%]
1	Cu(OAc) ₂ H ₂ O/pyridine	0.010	4
2	$Cu(OAc)_2 H_2O/pyridine$	0.030	13
3	Cu(OAc)2 [·] H2O/pyridine	0.045	24
4	Cu(OAc)2 ⁻ H2O/pyridine	0.060	18
5	CuCl/TMEDA/O ₂ /acetone	0.045	O ^a

 Table S3 Improvement of synthesis of hexadehydro[18]annulene h by variation of the Cu-system.

a – by TLC, another mayor product was formed which was most likely the cyclic dimer ($C_{12}H_4$).

Synthesis of [18] annulene by variation of the reductive system


Scheme S4 Reduction of i to [18]annulene j by variation of reductive system.

Different reductive systems were applied to reduce **i** to **j**. The results are summarized in table S4.

Table S4 Summary of applied reductive systems for the synthesis of j.

N	Reductive system	Additive	Solvent	Temperature [°C]	lsolated yield of j [%]
1	5% Pd/BaSO ₄	quinoline	benzene	rt	15-20
2	5% Pd/BaSO ₄	pyridine	benzene	rt	12-16
3	5% Pd/CaCO ₃ /Pb	quinoline	benzene	rt	17-23
4	5% Pd/BaSO ₄		benzene	rt	5-10
5	5% Pd/CaCO ₃ /Pb		benzene	rt	5-10
6	10% Pd/CaCO ₃		benzene	rt	5-10
7	5% Pd/CaCO ₃ /Pb	quinoline	EtOAc	rt	5-10
8	5% Pd/CaCO ₃ /Pb	quinoline	EtOAc	0	0-5
9	5% Pd/CaCO ₃ /Pb	quinoline	EtOAc	-78	
10	Na		NH₃(liquid)	-78	0
11	HSnBu₃/ ZnCu*		MeOH	rt	0
12	CrCl ₂		MeOH	rt	0

4. X-ray data of hexadehydro[18]annulene

Fig. S1 left: Crystal data and depictions of hexadehydro[18]annulene **5**; right: crystal packing of **5** in benzene matrix; benzene depicted in green and red, **5** depicted in yellow and blue; hydrogens are omitted for clarity.

5. References

- 1 W. H. Okamura and F. Sondheimer, J. Am. Chem. Soc., 1967, 89, 5991–5992.
- 2 M. Suzuki, A. Comito, S. I. Khan and Y. Rubin, Org. Lett., 2010, 12, 2346–2349.
- 3 K. Peter, K. P. C. Vollhardt and L. S. Winn, *Tetrahedron Lett.*, 1985, **26**, 709–712.

6. Spectra of all compounds (Uv/vis, NMR, HRMS)

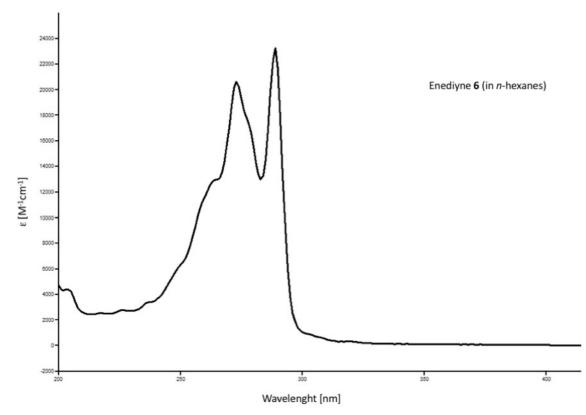


Fig. S2 UV/vis spectrum of 6 in *n*-hexane.

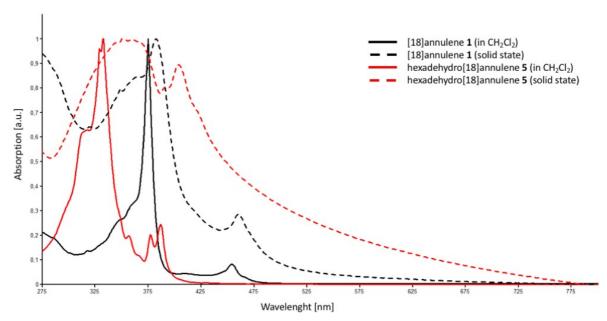
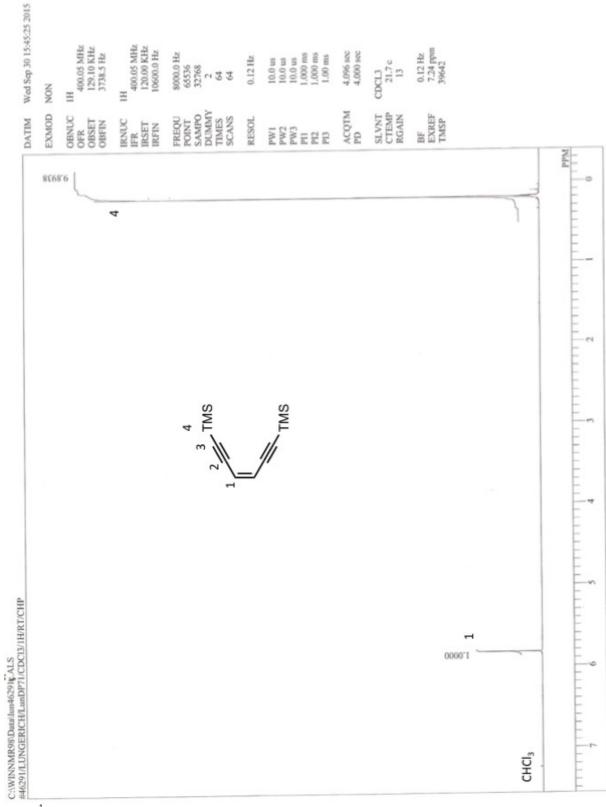
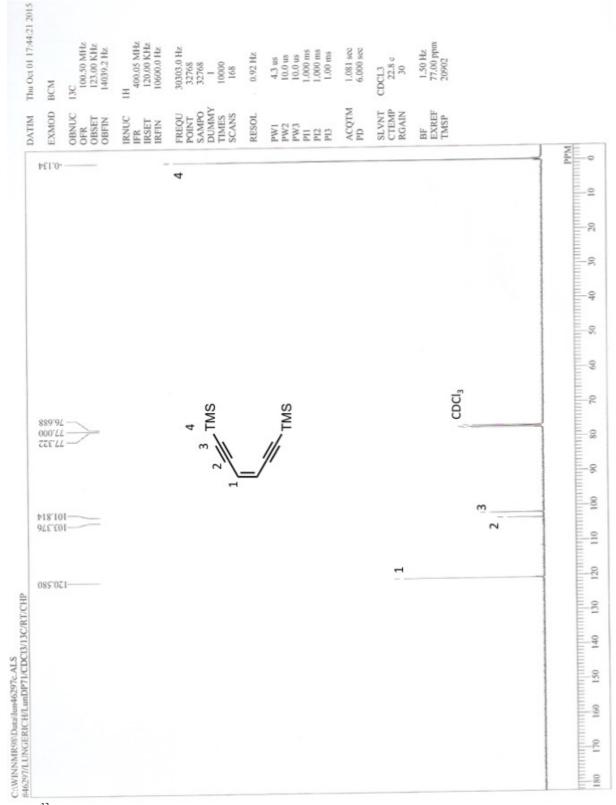
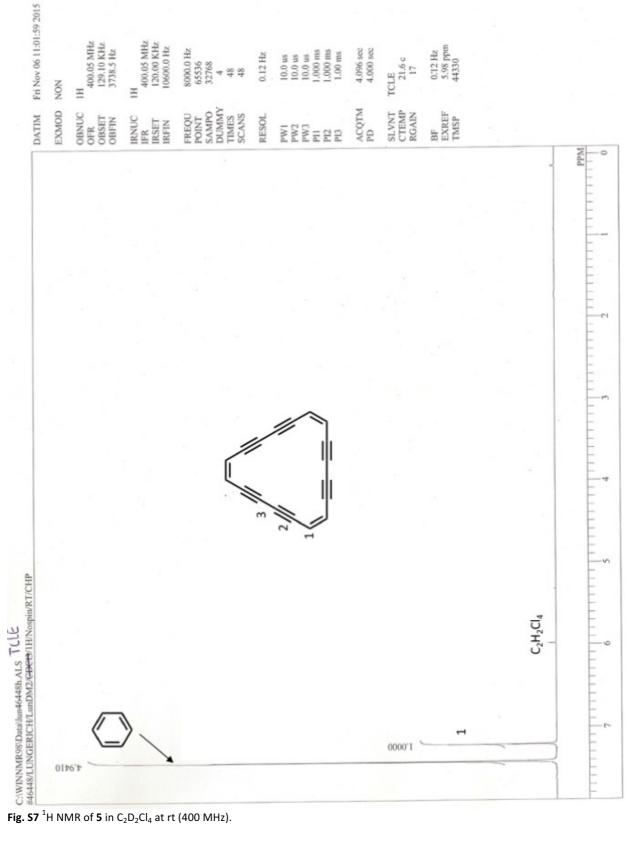
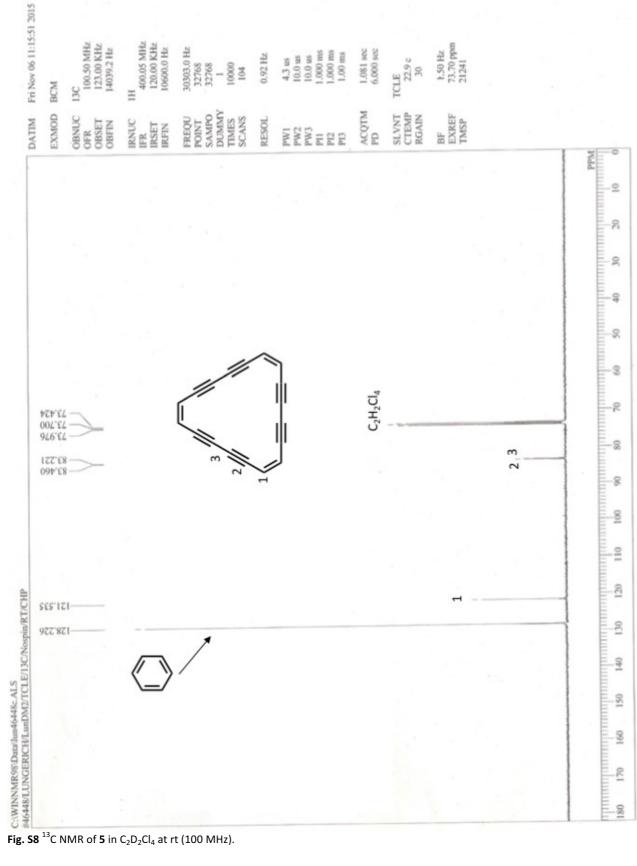
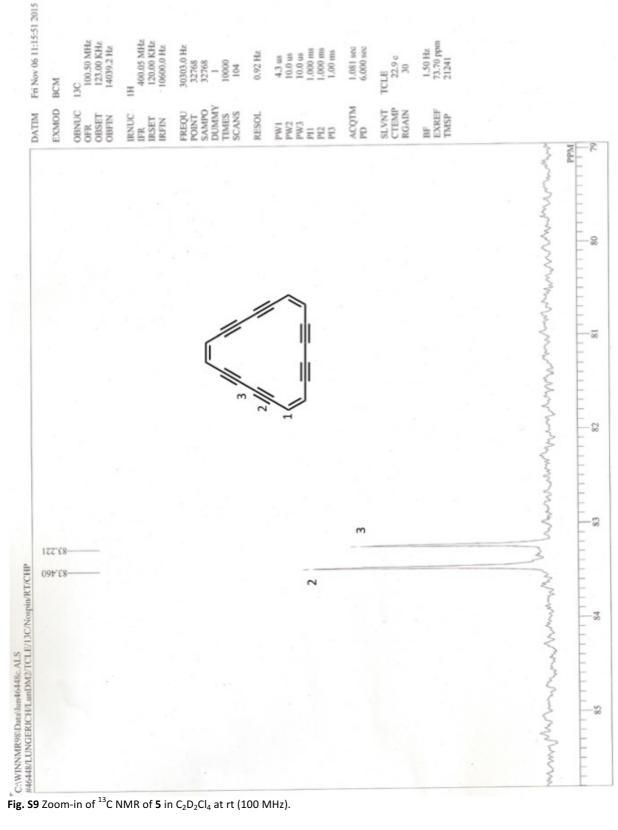




Fig. S3 normalized UV/vis spectra of 1 and 5 in solution and in the solid state.


Fig. S4 1 H NMR of **6** in CDCl₃ at rt (400 MHz).





		Displ	Display Report			
Analysis Info				Acquisition Date	10/1/2015 1:33:11 PM	
Analysis Name	D:\Data\Jux-2015-\Lungerich-P-71-appid APPI-klaine-Massen-ab-100- m	P-71-appid m		Operator	MD	
Sample Name				Instrument	maXis 4G	20183
Comment	Totuol					
Acquisition Parameter				Cat Makedinas		
Source Type	APPI Not active	Ion Polarity Set Capillary	POSITIVE 800 V	Set Dry Heater		
Scan Begin Scan End	100 m/z 1400 m/z	Set End Plate Offset Set Collision Cell RF	-500 V 2500.0 Vpp	Set Dry Gas Set Divert Valve	2.0 l/min Waste	
Intens 1	030011 000				+WS, C	+MS, 0.7-1.3min #(40-75)
1	2001 1022	D				
1500-						
1000-						
			221.115367			
					_	
2005						
-			M. L.		M.M.	
	220.10980	5	and the providence		C 1	C 12 H 20 Si 2 ,220.11
1500-	0					
	SMI					
1000-	<u>`</u> _					
}	_/					
-009	TMS		221.112898			
			_	CCC	273 406743	
			_	777	N N	
	219.5 220.0	220.5	221.0	221.5 222.0	222.5	z/m
Bruker Compass DataAnalysis 4.0	DataAnalysis 4.0	printed:	1: 10/1/2015 1:40:46 PM):46 PM	Page	Page 1 of 1

Fig. S6 HRMS of 6 (APPI, toluene).

		ndein	Lispidy heput			
Analysis Info	Contract in 200	A 40 40 40 4		Acquisition Date	4/17/2015 12:06:28 PM	06:28 PM
Method Sample Name Comment	D.NataJux-2019-Nungenat-UL-10-A0a APPI-klei-Meinhardtm Tol	dericar-UL-10-X00		Operator Instrument	MD maXis 4G	20183
Acquisition Parameter Source Type Focus Scan Begin Scan End	meter APPI Not active 100 m/z 1000 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 600 V -500 V 1000:0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		3.0 Bar 200 °C 3.0 l/min Waste
1.25 1.25 0.50 0.25 1.25 1.25 0.25 0.25		222.046492	223.049688	224.054661	•	-two, 0.0-0.9min #(23-39) C 18 H 6 ,222.05
0.50			223.049756	224.053111		
0.00	221	222	223	224	225	226 m/z
Bruker Compass DataAnalysis 4.0	DataAnalvsis 4.0	nrinted.	117/2015 12-10-03 DM	-10-03 DM	L	Dans 4 af 4

Fig. S10 HRMS of 5 (APPI, toluene).

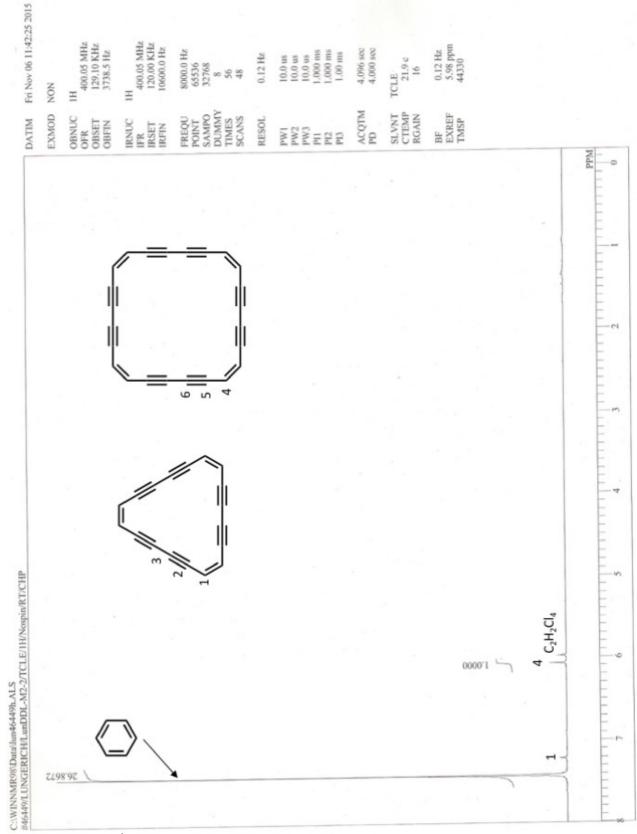


Fig. S11 Comparison of ¹H NMR of 5 and cyclic tetramer in $C_2D_2CI_4$ at rt (400 MHz).

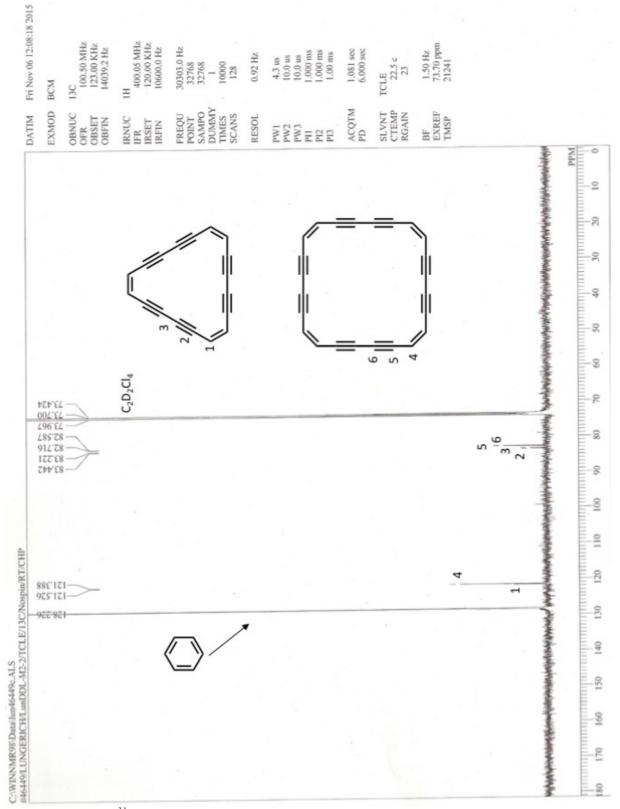
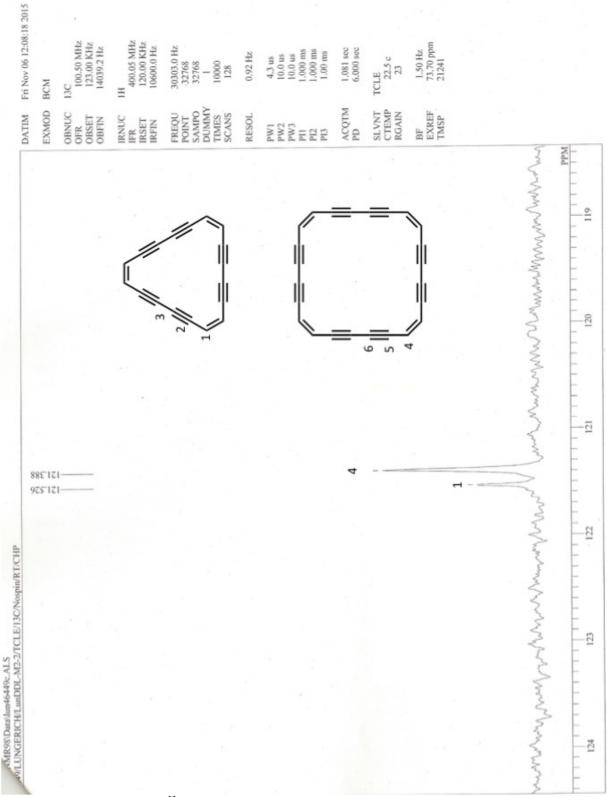
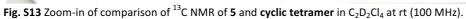




Fig. S12 Comparison of 13 C NMR of 5 and cyclic tetramer in $C_2D_2CI_4$ at rt (100 MHz).

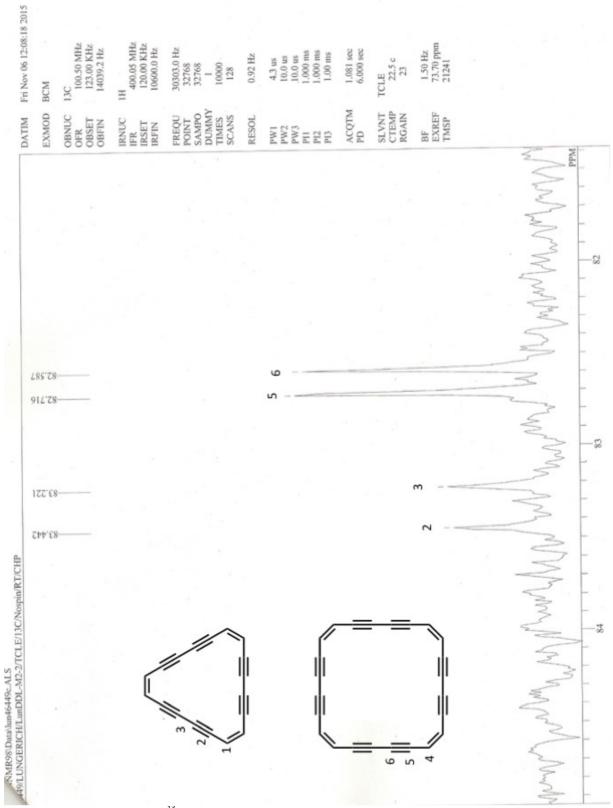


Fig. 14 Zoom-in of comparison of ¹³C NMR of 5 and cyclic tetramer in C₂D₂Cl₄ at rt (100 MHz).

			Display Report	ort			
Analysis Info	D-IDatal Inv.2016-N mo	D-IDatal Live-2016-UL inneriot-DL-M-2-2-anni- d		4	Acquisition Date	11/5/2015 3:09:39 PM	39 PM
Method Sample Name Comment	APPI-kleine-Massen-ab-100m MeOH	9-100-m			Operator Instrument	MD maXis 4G	20183
Acquisition Parameter Source Type Focus Scan Begin Scan End		Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 800 V RF 2500.0 Vpp	e	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve		3.0 Bar 200 °C 2.0 l/min Waste
Intens.		296.061979					+MS, 0.8-1.4min #(47-81)
2:0- 1.5-							
0.5-			297.065325				
	295.054103	1		298.070074			
200 x		296.062052					C 24 H 8 ,296.06
1.0	=		297.065407				
				298.068761	-		
294	295	296	297	298	299	-	300 m/z
Bruker Compass DataAnalysis 4.0	aAnalysis 4.0		printed: 11/5	11/5/2015 3:16:06 PM	We		Page 1 of 1

Fig. S15 HRMS of cyclic tetramer (APPI, MeOH).

۲22

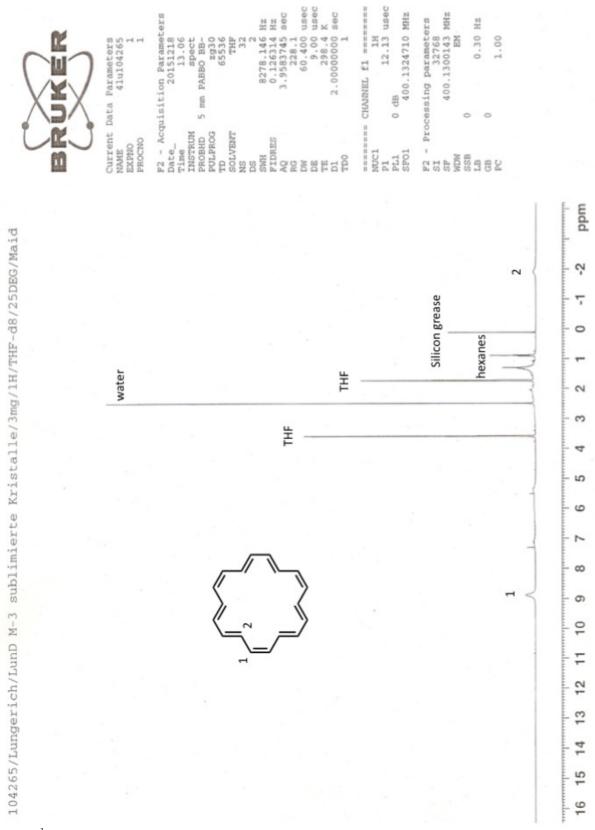
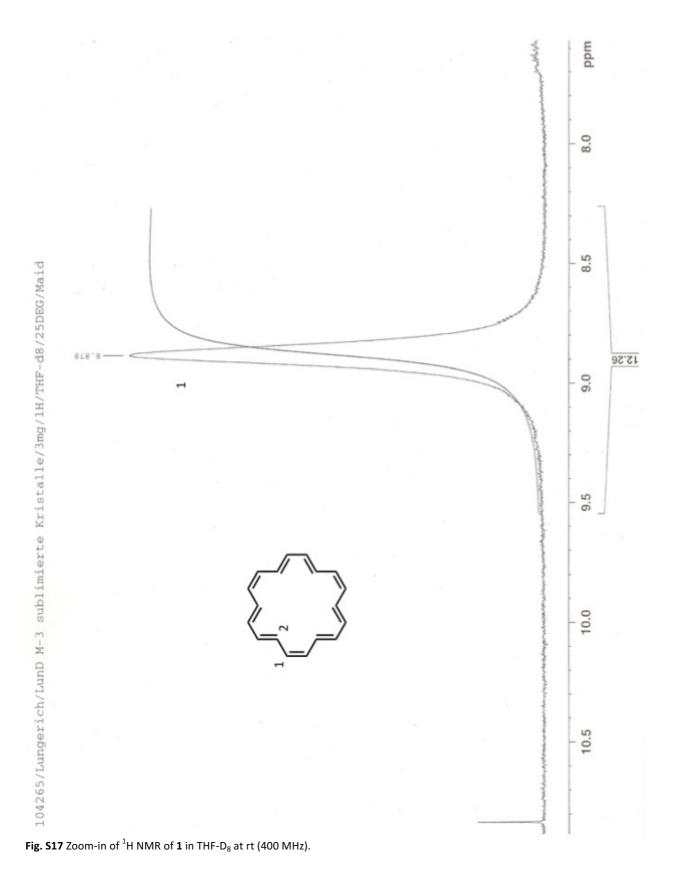
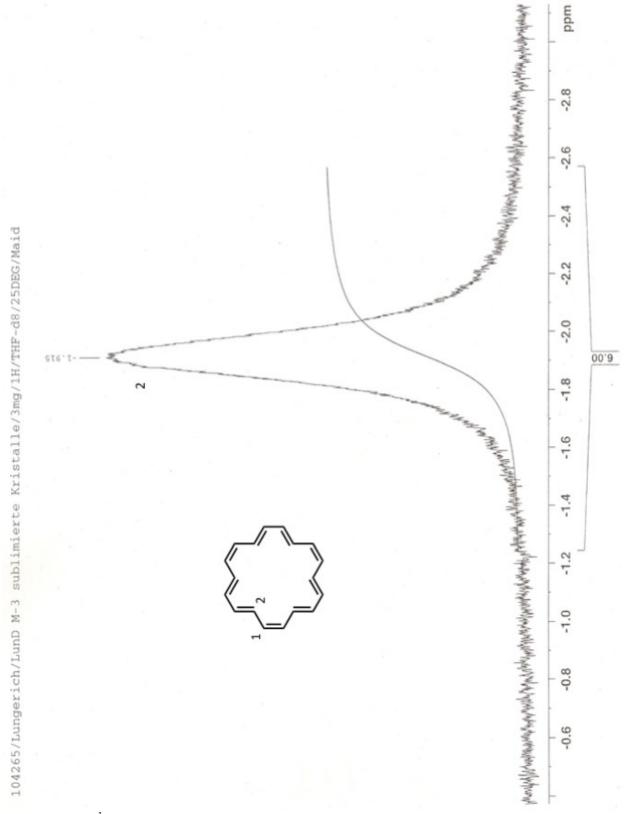




Fig. S16 ¹H NMR of sublimed 1 in THF-D₈ at rt (400 MHz); crystals were carefully washed with hexanes, CH_2Cl_2 , benzene and dried under N_2 -flow.

Fig. S18 Zoom-in of ¹H NMR of **1** in THF-D₈ at rt (400 MHz).

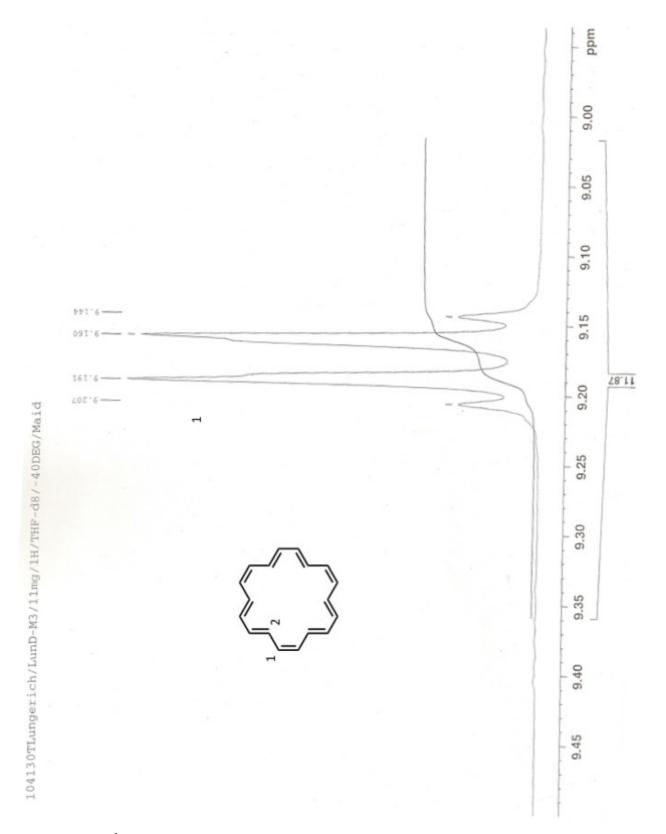
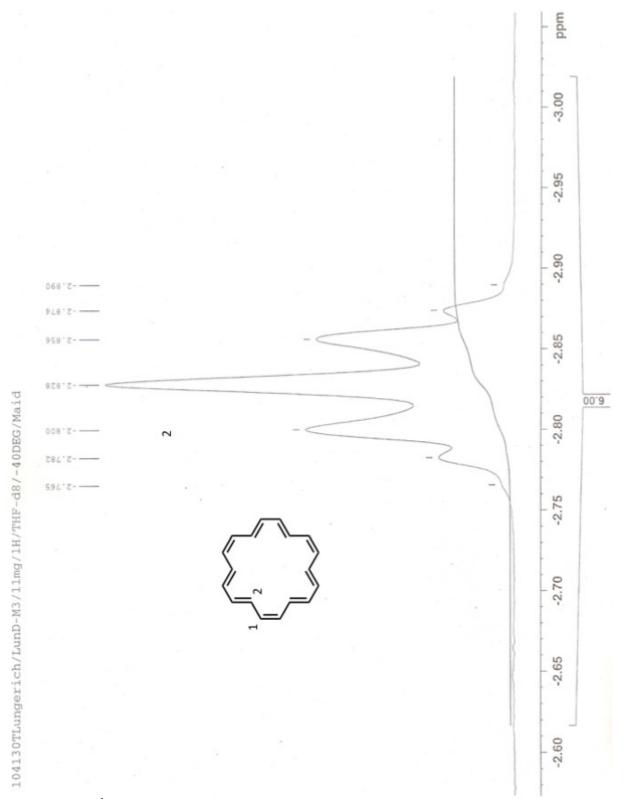
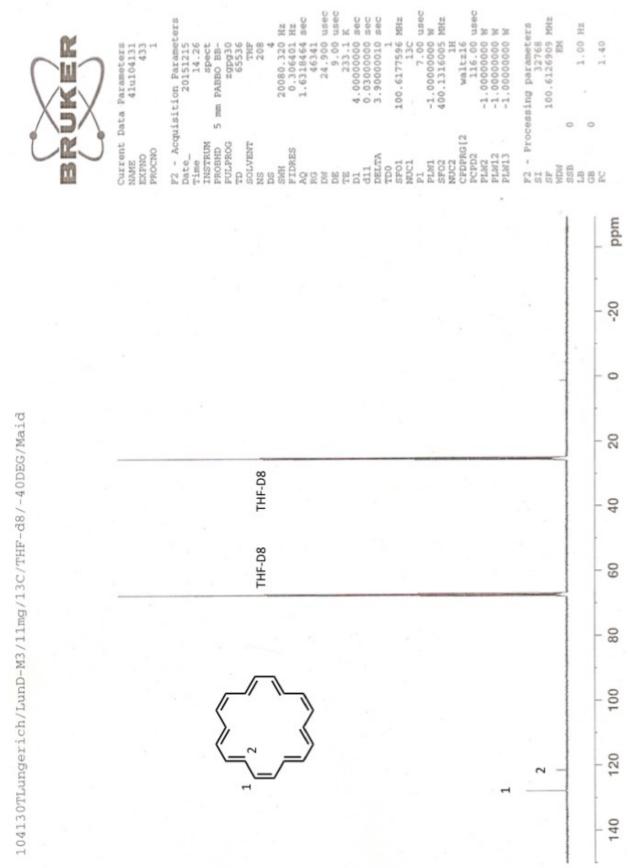




Fig. S19 Zoom-in of 1 H NMR of 1 in THF-D₈ at -40 °C (400 MHz).

Fig. S20 Zoom-in of ¹H NMR of **1** in THF-D₈ at -40 °C (400 MHz).

Fig. S21 13 C NMR of **1** in THF-D₈ at -40 °C (100 MHz).

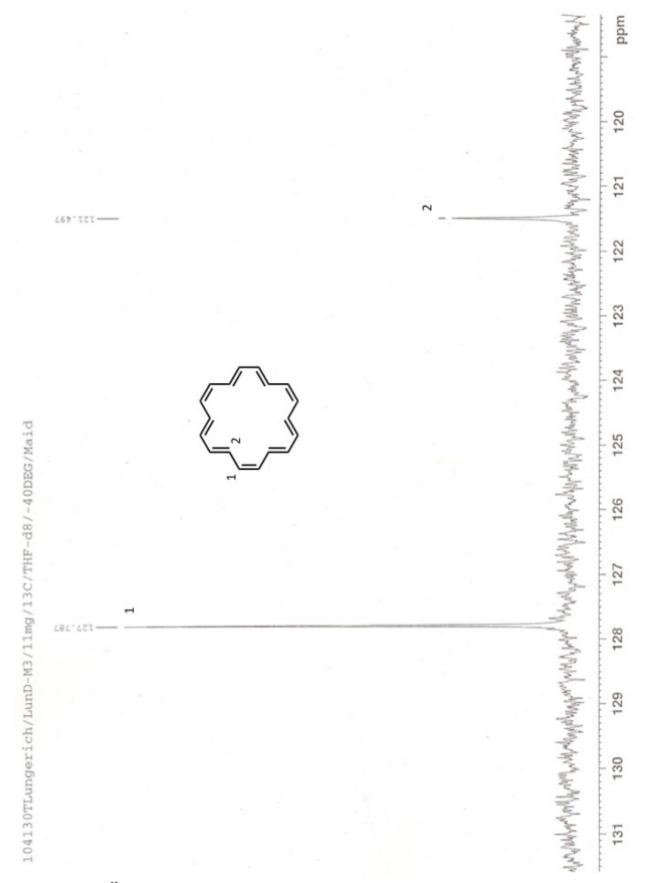
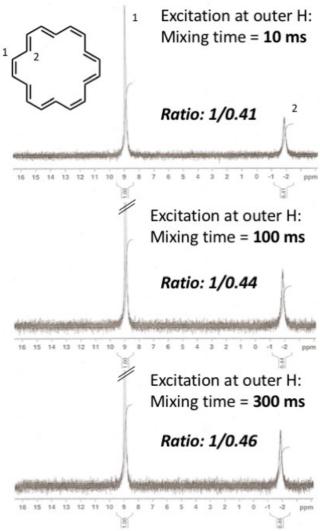



Fig. S22 Zoom-in of 13 C NMR of 1 in THF-D₈ at -40 °C (100 MHz).

Fig. S23 ¹H EXCY-NMR of **1** in THF-D₈ at rt (400 MHz); different mixing times indicate rapid exchange of inner and outer protons at rt.

			Displa	Display Report			
Analysis Info					Acquisition Date	1/22/2016 11:39:43 AM	AM
Analysis Name	D:\Data\	D:\Data\Jux-2016-\Lungerich-18-a-appid APDLMaine-ah-140- m	18-a-appid		Onerator	UM	
Sample Name		III-01-140-01			Instrument	maXis 4G	20183
Comment	Tol						
Acquisition Parameter Source Type Focus Scan Begin Scan End		APPI Not active 100 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 600 V -500 V 1000.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	3.0 Bar 200 °C 3.0 I/min Waste	
Intens.	234.140542	0542				+MS, 1	+MS, 1.2-1.7min #(45-64)
5000-							
4000			235.205383	8			
3000-							
2000-			235.143349				
1000-		M	L. W. J.		M		Mary
5000	234.140302	0302	er beste standare de anterestation de la la la la la				C 18 H 18 ,234.14
4000							
3000							<u> </u>
2000-						,, 	λ.
1000-			235.143662				
					236.147012		
	234.0	234.5	235.0	235.5	236.0	236.5	237.0 m/z
Bruker Compas	Bruker Compass DataAnalysis 4.0	4.0	printed:	1/22/2016 11:55:29 AM	:55:29 AM	Page	Page 1 of 1
maning inviting	היהלווחות היוחול היה						

Fig. S24 HRMS of 1 (APPI, toluene).