Supporting Information

M_8L_{12} cubic cages with all facial Δ or facial Λ configuration: Effects of surface anions on occupancy of the cage and anion exchange

Jing Yang,^{a,†} Xiao-Yong Chang,^{b,†} Kiu-Chor Sham,^a Shek-Man Yiu,^a Hoi-Lun Kwong^{a,*} and Chi-Ming Che^{b,*}

- a, Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- b, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

E-mail:bhhoik@cityu.edu.hk cmche@hku.hk

Contents

1.	Syntheses	and	characterizations	of		
complexesP2						
2.	Crystallographic data for [Mn ₈ L ₁₂](PF ₆) ₁₆ , [Zn ₈ L ₁	2](SbF ₆) ₁₆ and [Cd ₈ L ₁₂](OTf) ₁₆	P5		
3.	X-ray crystal structure of [Zn ₈ L ₁₂](SbF ₆) ₁₆		P6		
4.	X-ray crystal structure of [Cd ₈ L ₁₂](OTf) ₁₆		-•P6		
5.	¹ H– ¹ H COSY spectrum of [Zn ₈ L ₁₂](SbF ₆) ₁₆		P7		
6.	¹ H– ¹ H COSY spectrum of [Cd ₈ L ₁₂](OTf) ₁₆		P7		
7.	¹⁹ F NMR spectra of titratio	on between [Cd ₈ L ₁₂]((DTf) ₁₆ and Bu ₄ NSbF ₆	P8		
8.	¹ H NMR spectra of titratio	n between [Cd ₈ L ₁₂](C)Tf) ₁₆ and Bu ₄ NNTf ₂	P8		
9.	¹ H NMR spectra of titratio	n between [Cd ₈ L ₁₂](C)Tf) ₁₆ and Bu ₄ NNO ₃	·P9		
10.	¹ H NMR spectra of titratio	n between [Cd ₈ L ₁₂](C)Tf) ₁₆ and Bu ₄ NOTs·····	P9		

Experimental

Chemicals and Starting Materials

The solvents used for synthesis were of analytical grade. All starting chemicals were of reagent-grade quality and were obtained commercially and used as received without further purification.

Physical and Measurements and Instrumentation

¹H, ¹³C, ¹⁹F and COSY NMR spectra were recorded on Bruker 300, 400 and 600 MHz instruments for protons. Chemical shifts (δ) for ¹H NMR spectra are reported in parts per million (ppm) and are reported relative to the TMS as reference. Hexafluorobenzene (C₆F₆) was used as the internal standard (–164.9 ppm) for ¹⁹F NMR spectra. Electrospray ionization (ESI) mass spectra were measured by a PE SCIEX API 150EX system. HRMS was recorded on Waters Q-TOF premier mass spectrometer. Elemental analyses were performed on an Elementar Analysensysteme GmbH Vario EL elemental analyzer.

Synthesis of ligand

To a solution of 1-methyl-2-imidazolecarboxaldehyde (220 mg, 2 mmol) in ethanol (15 mL), *m*-xylenediamine (136 mg, 1mmol) was added dropwise with constant stirring. After stirring for 24 h at room temperature, the solution was concentrated by rotary evaporation to obtain a yellow hygroscopic liquid (yield: 97%). The ligand was then used for metalation without further purification. ¹H NMR (400 MHz, *d*₆-DMSO): δ 8.40 (s, 2H), 7.37–7.26 (m, 4H), 7.26–7.18 (m, 2H), 7.04 (d, *J* = 1.0 Hz, 2H), 4.77 (s, 4H), 3.89 (s, 6H). ¹³C NMR (150 MHz, *d*₆-DMSO): δ 154.1, 142.4, 139.6, 128.8, 128.5, 127.1, 126.3, 125.7, 64.1, 34.8. ESI-MS: m/z 321.2 [M + H]⁺, 343.2 [M + Na]⁺. HRMS (ESI-MS): m/z [M + H]⁺ (calc. 321.1828): found 321.1843.

Procedure for the self-assembly synthesis of the complexes

A solution of ligand (0.3 mmol) and metal salt (manganese hexafluorophosphate, zinc hexafluoroantimonate, or cadmium trifluoromethanesulfonate; 0.2 mmol) in acetonitrile/methanol (15 mL/3 mL) were stirred at room temperature for 4 h. The crude compound was isolated by filtration after precipitation by diethyl ether. Slow diffusion of isopropyl ether into acetonitrile and methanol solution of redissolved crude compound gave crystalline product.

[Mn₈L₁₂](PF₆)₁₆: yield: 71%. ESI-MS: 1505.9 [Mn₈L₁₂](PF₆)₁₂⁴⁺, 1175.4 [Mn₈L₁₂](PF₆)₁₁⁵⁺, 955.4 $[Mn_8L_{12}](PF_6)_{10}^{6+}$ and 798.5 $[Mn_8L_{12}](PF_6)_9^{7+}$. CHN elemental analysis: calc. for Mn₈(C₁₈H₂₀N₆)₁₂(PF₆)₁₆·7H₂O·5CH₃OH·5CH₃CN: C, 38.76; H, 4.05; N, 14.87; Found: C, 38.76; H, 4.03; N, 14.94%. [Zn₈L₁₂](SbF₆)₁₆: yield: 68%. ESI-MS: 1798.1 [Zn₈L₁₂](SbF₆)₁₂⁴⁺, 1390.6 $[Zn_8L_{12}](SbF_6)_{12}^{5+}$, 1120.4 $[Zn_8L_{12}](SbF_6)_{12}^{6+}$ and 927.1 $[Zn_8L_{12}](SbF_6)_{12}^{7+}$. CHN elemental analysis: calc. for Zn₈(C₁₈H₂₀N₆)₁₂(SbF₆)₁₆·27H₂O·CH₃CH₂OH: C, 30.19; H, 3.49; N, 11.63; Found: C, 30.23; H, 3.56; N, 11.61%. ¹H NMR (400 MHz, CD₃CN): δ 7.65 (s, 1H), 7.47 (s, 1H), 7.30 (d, J = 0.9 Hz, 1H), 6.50 (s, 1H), 6.02 (s, 2H), 4.86 (d, J = 14.4 Hz, 1H), 4.79 (d, J = 14.4 Hz, 1H), 3.55 (s, 3H). ¹³C NMR (150 MHz, CD₃CN): δ 152.5, 142.1, 138.0, 128.1, 128.0, 127.7, 126.5, 126.4, 63.3, 33.4. [Cd₈L₁₂](OTf)₁₆: yield: 82%. ESI-MS: 1632.8 $[Cd_8L_{12}](OTf)_{12}^{4+}$, 1276.5 $[Cd_8L_{12}](OTf)_{11}^{5+}$, 1038.7 $[Cd_8L_{12}](OTf)_{10}^{6+}$, and 869.6 $[Cd_8L_{12}](OTf)_9^{7+}$. CHN elemental analysis: calc. for $Cd_8(C_{18}H_{20}N_6)_{12}(OTf)_{16} \cdot 4H_2O$: C, 38.69; H, 3.47; N, 14.00; Found: C, 38.60; H, 3.48; N, 14.09 %. ¹H NMR (400 MHz, CD₃CN): δ 7.90–7.63 (m, 2H), 7.31 (d, J = 0.9 Hz, 1H), 6.74 (s, 1H), 6.17 (d, J = 7.7 Hz, 1H), 5.78 (t, J = 7.7 Hz, 1H), 5.08 (d, J = 13.9 Hz, 1H), 4.77 (d, J = 13.9 Hz, 1H). 3.58 (s, 3H). ¹³C NMR (150 MHz, CD₃CN): δ 151.8, 142.0, 138.3, 129.1, 128.9, 127.8, 126.8, 126.8, 123.2, 121.0, 63.0, 33.2. Protons of [Zn₈L₁₂](SbF₆)₁₆ and [Cd₈L₁₂](OTf)₁₆ are assigned with the help of ¹H–¹H COSY spectra (Figures S3 and S4).

Procedure of titrations between [Cd₈L₁₂](OTf)₁₆ and different anions

To study the anion exchange, the changes of NMR spectra were monitored during titrations of $[Cd_8L_{12}](OTf)_{16}$ which were dissolved in CD₃CN (0.5 mL; 1mM) with different anions (Bu₄NSbF₆, Bu₄NNTf₂, Bu₄NNO₃ and Bu₄NOTs; 0.25 M) at 300 K. In case

of titration between $[Cd_8L_{12}](OTf)_{16}$ (1 mM) and Bu_4NSbF_6 (from 0 to 35 equiv.; 0.25 M), Bu_4NSbF_6 was added to the solution of $[Cd_8L_{12}](OTf)_{16}$ in an NMR tube in small portions (1–10 µL). After every addition, the solution was thoroughly mixed by gentle shaking. After recording every ¹H NMR spectrum, ¹⁹F NMR spectrum was measured. ¹⁹F NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NSbF_6 are shown in Figure S5. ¹H NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NNTf_2 are shown in Figure S6. ¹H NMR spectra of titrations between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NNO_3 and $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NOTs are shown in Figures S7 and S8, respectively. Binding constants were estimated using the equation $K_{TfO-/anion} = [(anion) Cage]/[(TfO⁻) Cage](anion).$

X-ray crystallographic analysis

Single crystal diffraction data of $[Mn_8L_{12}](PF_6)_{16}$ was collected at 173(2) K on an Oxford Diffraction Gemini S Ultra X-ray single crystal diffractometer using monochromatized Cu-K α radiation (λ = 1.54178 Å). Single crystal diffraction data of $[Zn_8L_{12}](SbF_6)_{16}$ was collected at 100(2) K on an Bruker Proteum X8 X-ray single crystal diffractometer using multilayer mirror monochromatized Cu-K α radiation (λ = 1.54178 Å). Single crystal diffraction data of $[Cd_8L_{12}](OTf)_{16}$ was collected at 100(2) K using synchrotron radiation (λ = 0.78 Å) on beamline 3W1A of the Beijing Synchrotron Radiation Facility at the Institute of High Energy Physics, Chinese Academy of Sciences. All structures were solved by direct methods using SHELXS and refined by full-matrix least-squares on $|F^2|$ algorithm (SHELXL) using Olex2 program. Some solvent molecules and anions in the structures were omitted using SQUEEZE routing of PLATON program as they were highly disordered and could not been resolved unambiguously. Due to the weak diffraction feature of $[Zn_8L_{12}](SbF_6)_{16}$, the reflection data were cut off at 1.0 Å. Crystallographic data of all the complexes are given in Table S1.

Complex	[Mn ₈ L ₁₂](PF ₆) ₁₆	[Zn ₈ L ₁₂](SbF ₆) ₁₆	[Cd ₈ L ₁₂](OTf) ₁₆
Empirical formula	$C_{240}H_{240}F_{39}Mn_8N_{84}P_{6.5}$	$C_{216}H_{228}F_{96}N_{72}Sb_{16}Zn_8$	$C_{232}H_{240}Cd_8F_{48}N_{72}O_{48}S_{16}$
Formula weight	5682.99	8127.65	7129.11
Temperature/K	173	100	100
Crystal system	cubic	cubic	cubic
Space group	Pn 3n	Pa 3	Pa 3
a=b=c/Å	26.6801(3)	40.8424(9)	41.313(5)
α=β=γ/°	90.00	90	90
Volume/Å ³	18991.6(6)	68129(5)	70510(30)
Z	2	8	8
$\rho_{calc}g/cm^3$	0.994	1.585	1.343
µ/mm⁻¹	2.925	11.392	0.660
F(000)	5833.0	31584.0	28736.0
Crystal size/mm ³	0.35 × 0.33 × 0.28	0.3 × 0.3 × 0.3	0.5 × 0.5 × 0.5
Radiation	CuKα (λ = 1.54178)	CuKα (λ = 1.54178)	Synchrotron Radiation $(\lambda = 0.78)$
2θ range for data collection/°	6.62 to 143.44	3.746 to 98.256	1.708 to 53.784
Independent reflections	3103	11183	24838
Data/restraints/ parameters	3103/7/173	11183/59/1203	24838/654/1380
Goodness-of-fit on <i>F</i> ²	1.325	1.086	1.012
Final R indexes [I>=2σ (I)]	R ₁ = 0.1287, wR ₂ = 0.3681	$R_1 = 0.0977,$ $wR_2 = 0.2862$	R ₁ = 0.1225, wR ₂ = 0.3472

Table S1. Crystallographic data for $[Mn_8L_{12}](PF_6)_{16}$, $[Zn_8L_{12}](SbF_6)_{16}$ and $[Cd_8L_{12}](OTf)_{16}$.

Figure S1. X-ray crystal structure of $[Zn_8L_{12}](SbF_6)_{16}$ with (a) the encapsulated anion (disorder heavily) and (b) the exterior anions shown in space filling model.

Figure S2. X-ray crystal structure of $[Cd_8L_{12}](OTf)_{16}$ with (a) the encapsulated anion (disorder heavily) and (b) the exterior anions shown in space filling model.

Figure S4. ¹H–¹H COSY spectrum of $[Cd_8L_{12}](OTf)_{16}$ in CD₃CN.

Figure S5. ¹⁹F NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NSbF_6 in CD_3CN (from a to h: 0, 1, 3, 5, 7, 11, 20 and 35 equiv.).

Figure S6. ¹H NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NNTf_2 in CD_3CN (from a to j: 0, 1, 3, 5, 10, 20, 40, 60, 75 and 100 equiv.).

Figure S7. ¹H NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NNO_3 in CD_3CN (from a to g: 0, 1, 3, 5, 8, 20 and 50 equiv.).

Figure S8. ¹H NMR spectra of titration between $[Cd_8L_{12}](OTf)_{16}$ and Bu_4NOTs in CD_3CN (from a to f: 0, 1, 5, 10, 15 and 35 equiv.).