Supporting Information

Stepwise bulk-to-cluster-to-particle transformation toward efficient synthesis of alkynyl-protected silver nanoclusters

Hui Guo, ${ }^{\text {a,b }}$ Xin He, ${ }^{\text {b }}$ Chong-Qing Wan, ${ }^{\text {a, }, ~ a n d ~ L i a n g ~ Z h a o ~}{ }^{\mathrm{b}, *}$
${ }^{a}$ Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.

E-mail: wancq@cnu.edu.cn
${ }^{b}$ Key Laboratory of Bioorganic Phosphorus Chemistry \& Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China. E-mail: zhaolchem@mail.tsinghua.edu.cn

Synthesis

All commercially available chemicals were used without further purification. Methylazacalix[6]pyridine (Py[6]) was synthesized according to the literature method by the $[3+3]$ fragment coupling protocol between terminal dibrominated and diaminated linear trimers. ${ }^{1}$ 1a-f were synthesized according to the literature. ${ }^{2-4}$ The solvents used in this study were processed by standard procedures. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ experiments were carried out on a JEOL ECX-400MHz instrument.

Synthesis of $\left[\mathrm{Ag}_{3}\left(\boldsymbol{p}-\mathrm{MeOC}_{6} \mathbf{H}_{4} \mathrm{C} \equiv \mathbf{C}\right)(\mathrm{Py}[\mathbf{6}])\right]\left(\mathrm{CF}_{3} \mathbf{S O}_{3}\right)_{2} \mathbf{(2 a)}$. In a 5 mL glass vial, $\mathrm{AgSO}_{3} \mathrm{CF}_{3}(25.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1 \mathrm{ml})$ at room temperature. Then $\left[p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CAg}\right](\mathbf{1 a}, 11.9 \mathrm{mg}, 0.05 \mathrm{mmol})$ solid was added to the solution under stirring. After 5 min , a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1 mL) of methylazacalix[6]pyridine ($\mathbf{P y}[6], 6.4 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added dropwisely. The mixture was further stirred for 2 hours at room temperature. The solution was filtered and the filtrate was diffused by diethyl ether in the dark. After several days, pale yellow crystals of $\mathbf{2 a}$ were deposited.

Synthesis of 2b-f. The synthesis of complexes 2b-f is identical with the synthetic method for 2a but with other substituted silver phenylacetylides $\mathbf{1 b} \mathbf{b} \mathbf{f}$ in place of $\mathbf{1 a}$.

Preparation of $\mathbf{2 d} \mathbf{d} \mathbf{N P}$. In a 10 mL glass vial, $\operatorname{HPF}_{6}(0.2 \mathrm{mmol})$ was added dropwisely to the solution of $\mathbf{2 d}(0.8 \mathrm{~g} / \mathrm{L}, 3.5 \mathrm{~mL})$. The solution was centrifuged to give the solid sample of $\mathbf{2 d} \mathbf{d} \mathbf{N P}$. This sample was washed three times by ethanol and was then dispersed in toluene for TEM and UV-vis studies.

Preparation of 2d-Ag-NC. In a 10 mL glass vials, $\mathrm{HPF}_{6}(0.2 \mathrm{mmol})$ was added dropwisely to the solution of $2 \mathbf{d}(0.8 \mathrm{~g} / \mathrm{L})$, respectively. The solution was centrifuged to give a solid sample of 2d-NP. The solid sample was washed three times by ethanol and was then dispersed in toluene. Then $\mathrm{NaBH}_{4}(0.01 \mathrm{mmol}$, in ethanol) was added dropwisely to the solution of $\mathbf{2 d - N P}$ at $0^{\circ} \mathrm{C}$. The solution was centrifuged to give the solid sample of 2d-Ag-NC. This solid was washed three times by ethanol and was dispersed in toluene for TEM and UV-vis studies.

X-ray crystallographic analysis

Data for complex 2a (CCDC-1441335) was collected at 296K with Mo-Ka radiation ($\lambda=0.71073 \AA$) on a Bruker APEXII CCD diffractometer with frames of oscillation range 0.5°. All structures were solved by direct methods, and non-hydrogen atoms were located from difference Fourier maps. All non-hydrogen atoms were subjected to anisotropic refinement by full-matrix least-squares on F^{2} by using the SHELXTL program unless otherwise noticed. ${ }^{5}$

Crystal data for $\left[\mathrm{Ag}_{3}\left(\boldsymbol{p}-\mathrm{MeOC}_{6} \mathbf{H}_{4} \mathrm{C} \equiv \mathbf{C}\right)(\mathbf{P y}[6])\right]\left(\mathbf{C F}_{3} \mathbf{S O}_{3}\right)_{2}$
$\mathrm{C}_{47} \mathrm{H}_{43} \mathrm{Ag}_{3} \mathrm{~F}_{6} \mathrm{~N}_{12} \mathrm{O}_{7} \mathrm{~S}_{2}, M=1389.66$, triclinic, space group $P-1, a=12.88$ (3) \AA, $b=$ 13.13(4) $\AA, c=15.88(4) \AA, \alpha=99.38(2), \beta=90.29(3), \gamma=101.76(6), V=2593(12)$
$\AA^{3}, Z=2, T=296(2) \mathrm{K}, D_{\mathrm{c}}=1.780 \mathrm{~g} / \mathrm{cm}^{-3}$. The structure, refined on F^{2}, converged for 12200 unique reflections $\left(R_{\text {int }}=0.0373\right)$ and 9286 observed reflections with $I>$ $2 \sigma(I)$ to give $R_{1}=0.0450$ and $w R_{2}=0.1179$ and a goodness-of-fit $=1.033$.

Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ of 2a:

Ag1-C37	2.143(6)	Ag3-C37	2.297(6)
Ag1-N9	2.255(5)	Ag3-N5	2.333(6)
Ag1-Ag2	3.195(6)	Ag3-C38	2.429(6)
Ag2-C37	2.123(6)	Ag3-C10	2.574(7)
Ag2-N1	2.252(5)	Ag3-C20	2.676(6)
Ag2-Ag3	3.356(9)	N7-C23	1.350(5)
N1-C1	1.357(6)	N7-C19	1.351(6)
N1-C5	1.363(6)	C19-C20	1.406(6)
C1-C2	1.395(6)	C20-C21	1.402(6)
C1-N12	1.420(6)	C21-C22	1.392(7)
C2-C3	1.392(7)	C22-C23	1.407(6)
C3-C4	1.385(7)	C23-N8	1.409(6)
C4-C5	1.395(6)	N8-C25	1.419(6)
C5-N2	1.412(6)	N8-C24	1.471(6)
N2-C7	1.402(6)	N9-C25	1.361(6)
N2-C6	1.475(6)	N9-C29	1.367(5)
N3-C11	1.348(6)	C25-C26	1.403(6)
N3-C7	1.359(6)	C26-C27	1.400(7)
C7-C8	1.407(7)	C27-C28	1.363(7)
C8-C9	1.379(7)	C28-C29	1.400(6)
C9-C10	1.401(6)	C29-N10	1.400(6)
C10-C11	1.413(7)	N10-C31	1.414(6)
C11-N4	1.411(6)	N10-C30	1.485(6)
N4-C13	1.408(6)	N11-C31	1.345(6)
N4-C12	1.477(7)	N11-C35	1.358(6)
N5-C17	1.360(6)	C31-C32	1.412(7)
N5-C13	1.362(6)	C32-C33	1.392(7)
C13-C14	1.402(6)	C33-C34	1.394(6)
C14-C15	1.384(7)	C34-C35	1.404(7)
C15-C16	1.382(7)	C35-N12	1.400(6)
C16-C17	1.401(6)	N12-C36	1.473(6)
C17-N6	1.410(6)	O1-C42	1.375(5)
N6-C19	1.412(5)	O1-C45	1.442(7)
N6-C18	1.480(6)	C37-C38	1.236(6)
S1-O3	1.431(5)	C38-C39	1.454(6)
S1-O2	1.435(5)	C39-C40	1.396(6)
S1-O4	1.440(5)	C39-C44	1.400(7)
S1-C46	1.822(6)	C40-C41	1.390(6)
F11-C46	1.337(7)	C41-C42	1.389(7)
F12-C46	1.328(6)	C42-C43	1.395(7)
F13-C46	1.344(7)	C43-C44	1.386(7)

S2-O5	$1.435(5)$	F21-C47	$1.324(7)$
S2-O6	$1.439(5)$	F22-C47	$1.367(9)$
S2-O7	$1.446(4)$	F23-C47	$1.336(8)$
S2-C47	$1.806(8)$		

C37-Ag1- N9	164.16(13)	N10-C29- C28	121.9(4)
C37-Ag1- Ag2	41.26(13)	C29-N10-C31	122.6(3)
N9- Ag1- Ag2	154.57(10)	C29-N10-C30	118.5(4)
C37- Ag2- N1	174.98(14)	C31-N10-C30	118.9(4)
C37-Ag2- Ag1	41.76(13)	C31-N11-C35	118.4(4)
N1- Ag2- Ag1	140.07(13)	N11-C31-C32	122.8(4)
C37-Ag2- Ag3	42.57(16)	N11-C31-N10	115.8(4)
N1- Ag2-Ag3	132.45(16)	C32-C31-N10	121.3(4)
Ag1- Ag2- Ag3	65.04(14)	C33- C32-C31	117.4(4)
C37-Ag3- N5	142.81(17)	C32-C33-C34	121.0(4)
C37-Ag3- C38	30.16(14)	C33- C34- C35	117.3(4)
N5- Ag3- C38	112.85(19)	N11-C35- N12	115.4(4)
C37-Ag3- C10	133.46(18)	N11-C35- C34	123.0(4)
N5-Ag3- C10	73.93(18)	N12-C35- C34	121.7(4)
C38-Ag3- C10	149.16(14)	C35-N12- C1	121.5(4)
C37-Ag3- C20	124.75(18)	C35-N12-C36	120.0(4)
N5- Ag3- C20	73.6(2)	C1-N12-C36	117.5(4)
C38-Ag3- C20	125.38(18)	C42- O1- C45	117.0(4)
C10-Ag3- C20	85.44(18)	C38- C37- Ag2	141.5(3)
C37-Ag3- Ag2	38.69(12)	C38- C37-Ag1	120.5(3)
N5- Ag3- Ag2	151.49(11)	Ag2- C37- Ag1	96.98(19)
C38-Ag3-Ag2	64.48(11)	C38- C37- Ag3	80.9(3)
C10-Ag3-Ag2	94.85(12)	Ag2- C37-Ag3	98.7(2)
C20-Ag3- Ag2	132.66(14)	Ag1- C37- Ag3	105.0(2)
C1-N1- C5	118.8(3)	C37- C38- C39	177.7(4)
C1-N1-Ag2	118.5(3)	C37- C38- Ag3	69.0(3)
C5-N1-Ag2	121.3(3)	C39- C38- Ag3	112.1(3)
N1-C1-C2	122.1(4)	C40- C39- C44	118.6(4)
N1- C1- N12	117.8(3)	C40- C39- C38	120.4(4)
C2- C1- N12	120.1(4)	C44- C39- C38	121.1(4)
C3- C2- 12	118.7(4)	C41- C40- C39	121.2(4)
C4- C3- C2	119.6(4)	C42- C41- C40	119.4(4)
C3- C4- C5	119.3(5)	O1- C42- C41	123.8(4)
N1-C5-C4	121.5(4)	O1- C42- C43	116.1(4)
N1- C5- N2	117.9(3)	C41- C42- C43	120.1(4)
C4- C5- N2	120.6(4)	C44- C43- C42	120.1(4)
C7- N2- C5	121.9(4)	C43- C44- C39	120.5(4)

C7- N2- C6	119.2(4)	O3- S1- O2	115.0(3)
C5- N2- C6	118.8(4)	O3- S1- O4	114.2(3)
C11-N3-C7	118.0(4)	O2- S1- O4	115.6(3)
N3- C7- N2	115.0(4)	O3- S1- C46	104.6(3)
N3-C7- C8	122.7(4)	O2- S1- C46	102.4(3)
N2-C7- C8	122.2(4)	O4- S1- C46	102.7(3)
C9- C8- C7	118.3(4)	F12- C46- F11	106.0(5)
C8- C9- C10	120.4(4)	F12-C46- F13	108.8(5)
C9- C10- C11	117.4(4)	F11- C46- F13	106.8(4)
C9- C10-Ag3	97.6(3)	F12-C46-S1	112.6(4)
C11- C10-Ag3	80.8(3)	F11-C46-S1	112.0(4)
N3- C11-N4	114.9(4)	F13-C46-S1	110.4(4)
N3- C11-C10	123.1(4)	O5- S2- O6	113.5(3)
N4- C11-C10	122.0(4)	O5- S2-07	114.8(3)
C13-N4- C11	123.6(4)	O6- S2- O7	116.0(3)
C13-N4- C12	118.0(4)	O5- S2- C47	103.8(4)
C11-N4- C12	118.2(4)	O6- S2- C47	102.8(3)
C17-N5- C13	119.1(3)	O7- S2- C47	103.6(3)
C17-N5-Ag3	122.2(3)	F21- C47- F23	107.9(6)
C13-N5-Ag3	117.8(3)	F21- C47- F22	107.6(6)
N5-C13- C14	121.7(4)	F23- C47- F22	107.7(6)
N5- C13-N4	118.5(3)	F21-C47-S2	111.7(5)
C14- C13-N4	119.6(4)	F23-C47-S2	111.3(5)
C15- C14- C13	118.1(4)	F22-C47-S2	110.5(5)
C16- C15- C14	120.9(4)	N7- C23-C22	122.1(4)
C15- C16-C17	118.5(4)	N7- C23- N8	115.1(4)
N5-C17- C16	121.5(4)	C22-C23-N8	122.8(3)
N5- C17- N6	118.1(3)	C23-N8- C25	123.2(3)
C16- C17-N6	120.1(4)	C23-N8- C24	117.9(4)
C17-N6- C19	124.0(3)	C25-N8- C24	118.7(4)
C17-N6- C18	117.6(3)	C25-N9- C29	118.6(4)
C19- N6- C18	118.3(4)	C25-N9- Ag1	119.7(2)
C23-N7- C19	119.5(3)	C29- N9- Ag1	120.7(3)
N7- C19- C20	122.4(4)	N9- C25- C26	121.9(4)
N7- C19- N6	115.4(4)	N9- C25- N8	117.4(4)
C20-C19-N6	122.1(4)	C26-C25-N8	120.5(4)
C21-C20- C19	117.1(4)	C27-C26-C25	118.1(4)
C21- C20-Ag3	96.5(3)	C28- C27- C26	120.3(4)
C19- C20- Ag3	81.7(3)	C27- C28- C29	119.4(4)
C22-C21- C20	121.1(4)	N9- C29- N10	116.5(4)
C21-C22- C 23	117.6(4)	N9- C29- C28	121.5(4)

TEM Characterization

The morphology and size distribution of as-prepared Ag nanoparticles and nanoclusters was determined on a Hitachi H-7650 transmission electron microscope. The EDX and trials for searching lattice fringe of 2d-NP were taken by a JEOL JEM2011 and a FEI Tecnai $\mathrm{G}^{2} 20$ high-resolution transmission electron microscope.

The yield determining of $\mathbf{2 b} \mathbf{- f}-\mathbf{A g}-\mathrm{NC}$. In five 50 mL round-bottom flasks, $\mathbf{2 b}$-f ($0.01 \mathrm{mmol},\left[\mathrm{Ag}_{3}\left(p-\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{C}\right)(\mathbf{P y}[\mathbf{6}])\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2}, \mathrm{n}=8,10,12,14,16$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} / 10 \mathrm{ml})$ at room temperature, respectively. HPF_{6} ($0.2 \mathbf{~ m m o l}$) was added dropwisely to the solutions of $\mathbf{2 b} \mathbf{- f}$, respectively. The solutions were centrifuged to give solid samples, which were washed three times by ethanol and were dispersed in toluene. Then NaBH_{4} (0.01 mmol , in ethanol) was added dropwisely to the solutions of $\mathbf{2 b - f} \mathbf{- N P}$ at $0^{\circ} \mathrm{C}$. The solutions were centrifuged to give solid samples of 2b-f-Ag-NC. The solid samples were washed three times by ethanol. The dry solid samples each was respectively added in a solution of $\mathrm{HNO}_{3}(16 \mathrm{~mol} / \mathrm{L}$, $2 \mathrm{~mL})$. The resulting solutions were titrated by an aqueous solution of $\mathrm{NaCl}(0.1$ $\mathrm{mmol}, 10 \mathrm{~mL}$) to produce AgCl . The solids of AgCl were collected, washed and dried to measure their weight. The mass of acquired AgCl were $4.1 \mathrm{mg}, 3.9 \mathrm{mg}, 4.0 \mathrm{mg}, 3.9$ $\mathrm{mg}, 3.8 \mathrm{mg}$ for $\mathbf{2 b} \mathbf{- f}$, respectively. Then the yields of $\mathbf{2 b}-\mathbf{f}-\mathbf{A g}-\mathrm{NC}$ were calculated as $95 \%, 91 \%, 93 \%, 91 \%, 88 \%$, respectively.

References

[1] E.-X. Zhang, D.-X. Wang, Q.-Y. Zheng, M.-X. Wang, Org. Lett., 2008, 10, 2565.
[2] A. Ikeda, M. Omote, K. Kusumoto, A. Tarui, K. Sato, A. Ando, Org. Biomol. Chem., 2015, 13, 8886.
[3] S.-J. Lee, C.-R. Park, J.-Y. Chang, Langmuir, 2004, 20, 9513.
[4] C.-Y. Gao, L. Zhao and M.-X. Wang, J. Am. Chem. Soc., 2012, 134, 824.
[5] a) G. M. Sheldrick, SHELXS-97 (Univ. Göttingen, 1990). b) G. M. Sheldrick, SHELXL-97 (Univ. Göttingen, 1997).

Supporting Figures

Figure S1. Electrospray ionization mass spectroscopy (ESI-MS) of complex 2a. [M$\left.\mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{+}: 1241.0320,\left[\mathrm{M}-2 \mathrm{CF}_{3} \mathrm{SO}_{3}\right]^{2+}: 546.0398$.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}\right.$, methanol $\left.-d_{4}: \mathrm{CDCl}_{3}, \mathrm{v} / \mathrm{v}=1: 1\right)$ of $\mathbf{2 a}$.

Figure S3. Raman spectrum of $\mathbf{1 d}$ and $\mathbf{2 d} \mathbf{d N P}$. The raman shift of $\mathrm{C} \equiv \mathrm{C}$ in $\mathbf{1 d}$ is 2047 cm^{-1} but $2029 \mathrm{~cm}^{-1}$ in 2d-NP.

Figure S4. Powder X-ray diffraction (PXRD) of (a) 1d and (b) 2d-NP.

Figure S5. Energy dispersive X-ray spectroscopy (EDX) of 2d-NP, suggesting the presence of the elements $\mathrm{Ag}, \mathrm{C}, \mathrm{O}, \mathrm{F}, \mathrm{S}$ and P .

Figure S6. Thermal gravimetric analysis (TGA) of 1d and 2d-NP.

Figure S7. High-resolution TEM of 2d-NP.

Ag3d Scan
1 Scan, $40.1 \mathrm{~s}, 500 \mu \mathrm{~m}$, CAE $30.0,0.05 \mathrm{eV}$

Name	Start BE	Peak BE	End BE	Height CPS	$\begin{aligned} & \text { FWH } \\ & \text { MeV } \end{aligned}$	$\begin{aligned} & \text { Area (P) } \\ & \text { CPS.eV } \end{aligned}$	Area (N) TPP- 2M	Atomic \%
$\begin{aligned} & \mathrm{Ag} 3 \mathrm{~d} \\ & 5 \end{aligned}$	$\begin{array}{r} 371.3 \\ 2 \end{array}$	368.15	364.79	82452.9	1.1	102380.28	0.1	13.09
P2p	140.0 7	133.41	129.42	1425.41	1.97	3742.1	0.03	4.32
S2p	171.2 2	161.51	158.17	2348.52	1.15	3959.11	0.03	3.31
C1s	$\begin{array}{r} 291.7 \\ 7 \end{array}$	284.49	279.42	21544.5 6	1.24	34219.47	0.43	55.73
N1s	$\begin{array}{r} 404.9 \\ 7 \end{array}$	400.08	395.72	1674.7	1.96	4275.89	0.03	4.31
O1s	$\begin{array}{r} 538.8 \\ 7 \end{array}$	530.47	526.22	8238	1.47	18049.81	0.09	11.1
F1s	$\begin{array}{r} 692.3 \\ 7 \end{array}$	685.93	681.87	8966.11	1.68	17623.93	0.06	8.13

Figure S8. X-ray photoelectron spectroscopy (XPS) of 2d-NP. The binding energy peaks of Ag 3 d are 368.47 and 374.47 eV .

Figure S9. Auger electron spectroscopy (AES) of 2d-NP. The binding energy peaks of Ag are 1130.57 and 1136.52 eV .

Figure S10. Electron energy loss spectroscopy (EELS) of (a) metallic Ag , (b) $\mathrm{Ag}_{2} \mathrm{~S}$ NPs, (c) 2d-NP.

Figure S11. TEM images of differently sized 2d-NP. The concentration of 2d is (a)
$0.8 \mathrm{~g} / \mathrm{L}, 0.5 \mathrm{~mL}$; (b) $0.8 \mathrm{~g} / \mathrm{L}, 1.0 \mathrm{~mL}$; (c) $0.8 \mathrm{~g} / \mathrm{L}, 1.5 \mathrm{~mL}$; (d) $0.8 \mathrm{~g} / \mathrm{L}, 2.0 \mathrm{~mL}$; (e) 0.8 $\mathrm{g} / \mathrm{L}, 3.0 \mathrm{~mL}$ and (f) $0.8 \mathrm{~g} / \mathrm{L}, 3.5 \mathrm{~mL}$.

Figure S12. UV-vis absorption spectra of differently sized 2d-NP. The two absorption peaks are 300 and 362 nm .

derived from the same concentrated Py[6]protected silver clusters with variable alkyl chain lengths from n-octyl to n-hexadecyl.

Figure S14. Monitoring the variation of (a) UV-vis spectra, and (b) photographs of 2d-Ag-NC within one week to evaluate the stability of alkynyl-protected silver nanoclusters.

Figure S15. Raman spectrum of 2d-Ag-NC. The Raman shift of $\mathrm{C} \equiv \mathrm{C}$ is $1970 \mathrm{~cm}^{-1}$.

Figure S16. (a, b) X-ray photoelectron and (c) Auger electron spectroscopies of 2d-Ag-NC. The binding energy peaks of Ag3d in XPS are 367.59 and 373.59 eV . In AES, the peaks are 1128.09 and 1133.79 eV .

Figure S17. TEM images of 2d-Ag-NC. The concentration of $\mathbf{2 d}$ is (a) $0.8 \mathrm{~g} / \mathrm{L}, 1.0$
mL ; (b) $0.8 \mathrm{~g} / \mathrm{L}, 2.0 \mathrm{~mL}$; (c) $0.8 \mathrm{~g} / \mathrm{L}, 3.0 \mathrm{~mL}$ and (d) $0.8 \mathrm{~g} / \mathrm{L}, 3.5 \mathrm{~mL}$.

