Electronic Supplementary Information

Sandwich phosphate complexes of macrocyclic tris(urea) ligands and the rotation around the anion

Liguo Ji, Yanxia Zhao, Meng Sun, Liping Cao, Xiao-Juan Yang, Yao-Yu Wang, Biao Wu*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

Table of contents:

Experimental details

- S1. General
- **S2.** Synthesis of ligands L^1-L^4
- **S3.** X-ray crystallography
- **S4.** ¹H NMR studies

S1. General

All solvents and reagents were of reagent grade quality. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE III-400 spectrometer at 400 and 100 MHz, respectively, with TMS as an internal standard. ³¹P NMR spectra were measured in acetone- $d_6/0.5\%$ water by using PPh₃ as the internal reference (which was calibrated to be at $\delta = -4.15$ ppm relative to 85% aqueous phosphoric acid). All ¹H NMR titrations were performed in DMSO- $d_6/0.5\%$ water or acetone- $d_6/0.5\%$ water. Elemental analyses were performed on an Elementar VarioEL instrument. IR spectra were recorded on a Bruker IFS 120HR spectrometer. ESI-MS measurements were carried out using a Bruker micrOTOF-Q II Electrospray Ionization Mass Spectrometer in THF or THF/DMF. Melting points were detected on an X-4 Digital Vision MP Instrument.

Scheme S1. Synthesis of the heteroditopic macrocyclic receptors \mathbf{L}^{n} (n = 1-4).

1,8-Bis(tosyloxy)-3,6-dioxaoctane [TsO(CH₂CH₂)₃OTs, 3(1)].

3(1) was prepared following a similar procedure to that of the previous literature.^{S1} A solution of triethylene glycol (5.0 g, 0.033 mol) in THF (35 mL) was added to a solution of KOH (7.5 g, 0.13 mol) in water (18 mL) under stirring with an ice/water bath, and then a solution of *p*-toluenesulfonyl chloride (13.3 g, 0.07 mol) in THF (35 mL) was added dropwise to the mixture over 2 h with continuous stirring and cooling. The solution was further stirred vigorously for an additional 5 h before being poured into ice-water (35 mL). The ditosylate was isolated by extracting twice with CH_2Cl_2 (35 mL). The combined organic extracts were washed twice with H_2O (20 mL) and once with saturated aqueous sodium chloride solution (20 mL) and then dried (MgSO₄). Removal of MgSO₄ and solvent afforded **3(1)** as a white solid (13.5 g, 88%): ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.78 (d, 4H), 7.34 (d, 4H), 4.13 (t, 4H), 3.65 (t, 4H), 3.52 (s, 4H), 2.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃, ppm), 144.9 (C), 132.9 (C), 129.8 (CH), 127.9 (CH), 70.6 (CH₂), 69.2 (CH₂), 68.7 (CH₂), 21.6 (CH₃). M.p. 82–83 °C (Ref. S1: 80–81 °C).

Ditosylates of n = 2-4 [Ts(OCH₂CH₂)_{*n*+2}OTs, 3(*n*)]. Ditosylates 3(*n*) (n = 2-4) were prepared in the same way as 3(1). After removal of MgSO₄ and solvent, a clear, colorless viscous liquid was obtained. The product was pure enough for further use.

1,11-Bis(tosyloxy)-3,6,9-trioxaundecane [Ts(OCH₂CH₂)₄OTs, 3(2)]: Yield 93%. ¹H NMR (400 MHz, CDCl₃): *δ* 7.79 (d, 4H), 7.34 (d, 4H), 4.15 (t, 4H), 3.68 (t, 4H), 3.58 (m, 8H), 2.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃), 144.8 (C), 132.9 (C), 129.8 (CH), 127.9 (CH), 70.5 (CH₂), 69.3 (CH₂), 68.6 (CH₂), 21.6 (CH₃).

1,14-Bis(tosyloxy)-3,6,9,12-tetraoxatetradecane [**Ts(OCH₂CH₂)₅OTs, 3(3)**]: Yield 92%. ¹H NMR (400 MHz, CDCl₃): δ7.79 (d, 4H), 7.34 (d, 4H), 4.14 (t, 4H), 3.68 (t, 4H), 3.59 (m, 12H), 2.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃), 144.8 (C), 132.9 (C), 129.8 (CH), 127.9 (CH), 70.6 (CH₂), 69.3 (CH₂), 68.6 (CH₂), 21.6 (CH₃).

1,17-Bis(tosyloxy)-3,6,9,12,15-pentaoxaheptadecane [Ts(OCH₂CH₂)₆OTs, 3(4)]: Yield 95%. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, 4H), 7.34 (d, 4H), 4.15 (t, 4H), 3.68 (t, 4H), 3.60 (m, 16H), 2.45 (s, 6H). ¹³C NMR (100 MHz, CDCl₃), 144.8 (C), 132.9 (C), 129.8 (CH), 127.9 (CH), 70.5 (CH₂), 69.3 (CH₂), 68.6 (CH₂), 21.6 (CH₃).

1,8-Bis(4-nitrophenoxy)-3,6-dioxaoctane, 4(1).

4(1) can be prepared by nucleophilic displacement of the tosyl group of ditosylate by 4-nitrophenoxide ion. A solution of 4-nitrophenol (3.18 g, 0.023 mol), K₂CO₃ (9.50 g, 0.069 mol), and **3(1)** (5.00 g, 0.011 mol) in dry acetonitrile (40 mL) was refluxed under N₂ for 8 hours. The reaction mixture was then allowed to cool to room temperature, filtered and the solvent removed in vacuo. The crude product was purified by extracting twice with CH₂Cl₂/H₂O (v/v 30 mL/15 mL). The combined organic extracts were washed twice with H₂O (15 mL) and once with saturated aqueous sodium chloride solution (15 mL) and then dried (MgSO₄). Removal of MgSO₄ and solvent afforded **4(1)** as a pale yellow solid, which is recrystallized from dichloromethane/n-hexane/ethyl acetate (v/v 10:5:1) (3.7 g, 86%): ¹H NMR (400 MHz, CDCl₃): δ 8.18 (d, 4H), 6.97 (d, 4H), 4.22 (t, 4H), 3.91 (t, 4H), 3.77 (s, 4H). ¹³C NMR (100 MHz, CDCl₃), 163.8 (C), 141.6 (C), 125.9 (CH), 114.6 (CH), 70.9 (CH₂), 69.5 (CH₂), 68.2 (CH₂). M.p. 97–98 °C (Ref. S2: 96.5–97.5 °C).

4(n) (n = 2-4) were prepared in the same way as 4(1).

1,11-Bis(4-nitrophenoxy)-3,6,9-trioxaundecane, 4(2): Yield 81%. ¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, 4H), 6.98 (d, 4H), 4.23 (t, 4H), 3.90 (t, 4H), 3.72 (m, 8H). ¹³C NMR (100 MHz, CDCl₃), 163.9 (C), 141.5 (C), 125.8 (CH), 114.6 (CH), 70.8 (CH₂), 69.4 (CH₂), 68.2 (CH₂). M.p. 75–76 °C (Ref. S2: 76–77 °C).

1,14-Bis(4-nitrophenoxy)-3,6,9,12-tetraoxatetradecane, 4(3): Yield 78%. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, 4H), 6.90 (d, 4H), 4.14 (t, 4H), 3.82 (t, 4H), 3.58 (m, 12H). ¹³C NMR (100 MHz, CDCl₃), 162.8 (C), 140.5 (C), 124.8 (CH), 113.6 (CH), 69.7 (CH₂), 68.4 (CH₂), 67.2 (CH₂). M.p. 92–93 °C (Ref. S2: 91–92 °C).

1, 17-Bis(4-nitrophenoxy)-3,6,9,12,15-pentaoxaheptadecane, 4(4): Yield 74%. ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, 4H), 6.98 (d, 4H), 4.22 (t, 4H), 3.89 (t, 4H), 3.67 (m, 16H). ¹³C NMR (100 MHz, CDCl₃), 163.9 (C), 141.6 (C), 125.8 (CH), 114.6 (CH), 70.6 (CH₂), 69.4 (CH₂), 68.2 (CH₂). M.p. 63–64 °C (Ref. S2: 63–64 °C).

1,8-Bis(4-aminophenoxy)-3,6-dioxaoctane, 5(1).

Hydrazine monohydrate (8.0 mL) was added dropwise to a suspension of **4(1)** (2.50 g, 6.4 mmol) and Pd/C 10% (0.20 g, cat.) in methanol (300 mL). After refluxing under intensive stirring for 10 hours, the Pd/C was filtered off *via* suction filtration through celite, and then the solvent removed in vacuo. The crude product was purified by washing several times with water, small volumes of methanol, diethyl ether and dried over vacuum. The product **5(1)** was isolated as an off-white solid (1.7 g, 80%). ¹H NMR (400 MHz, CDCl₃): δ 6.75 (d, 4H), 6.60 (d, 4H), 4.03 (t, 4H), 3.81 (t, 4H), 3.73 (s, 4H), 3.39 (s, 4H, NH₂). ¹³C NMR (100 MHz, CDCl₃), 151.9 (C), 140.2 (C), 116.3 (CH), 115.8 (CH), 70.8 (CH₂), 69.9 (CH₂), 68.1 (CH₂). M.p. 94–95 °C (Ref. S2: 92.2–92.6 °C).

5(n) (n = 2-4) were prepared by the similar method as 5(1). After removing the solvent, the crude product was purified by extracting twice with CH₂Cl₂/H₂O (v/v 30 mL/15 mL). The combined organic extracts were washed twice with H₂O (15 mL) and once with saturated aqueous sodium chloride solution (15 mL) and then dried (MgSO₄). Removal of MgSO₄ and solvent afforded 5(n) as a pale white solid.

1,11-Bis(4-aminophenoxy)-3,6,9-trioxaundecane, 5(2): Yield 82%. this product was obtained as a viscous oil as reported in Ref. S2. ¹H NMR (400 MHz, CDCl₃): δ 6.74 (d, 4H), 6.60 (d, 4H), 4.03 (t, 4H), 3.80 (t, 4H), 3.69 (m, 8H), 3.30 (s, 4H, NH₂). ¹³C NMR (100 MHz, CDCl₃), 151.8 (C), 140.2 (C), 116.3 (CH), 115.8 (CH), 70.7 (CH₂), 69.9 (CH₂), 68.1 (CH₂).

1,14-Bis(4-aminophenoxy)-3,6,9,12-tetraoxatetradecane, **5(3):** Yield 83%. ¹H NMR (400 MHz, CDCl₃): δ 6.74 (d, 4H), 6.60 (d, 4H), 4.03 (t, 4H), 3.79 (t, 4H), 3.65 (m, 12H), 3.36 (s, 4H, NH₂). ¹³C NMR (100 MHz, CDCl₃), 151.8 (C), 140.2 (C), 116.3 (CH), 115.8 (CH), 70.6 (CH₂), 69.8 (CH₂), 68.1 (CH₂). M.p. 55–56 °C (Ref. S2: 54–55 °C).

1,17-Bis(4-aminophenoxy)-3,6,9,12,15-pentaoxaheptadecane, 5(4): Yield 85%. ¹H NMR (400 MHz, CDCl₃): δ 6.74 (d, 4H), 6.60 (d, 4H), 4.03 (t, 4H), 3.79 (t, 4H), 3.65 (m, 16H), 3.43 (s, 4H, NH₂). ¹³C NMR (100 MHz, CDCl₃), 151.8 (C), 140.3 (C), 116.3 (CH), 115.8 (CH), 70.6 (CH₂), 69.9 (CH₂), 68.1 (CH₂). M.p. 57–58 °C (Ref. S2: 56–57 °C).

Oligomeric ethylene glycol di(4-nitrophenyl-N-(4-phenyl)-carbamate), 6(n).

To a solution of 4-nitrophenyl chloroformate (0.24 g, 1.2 mmol) in dry THF (50 mL) was slowly added a solution of 5(1) (0.2 g, 0.6 mmol) in dry THF (50 mL) over a period of 30 min under a dry nitrogen atmosphere and ice-cooling. After being stirred for an additional 2 h at room temperature, the reaction mixture was filtered and the filtrate was used immediately in the next step without any purification or characterization.

1,3-Bis(2-(4-(1,4,7,10-tetraoxa-decane-1,10-diyl)phenyl)urea-phenyl)urea, (L¹)

A solution of **6(1)** in dry THF (100 mL) prepared in the step above and a solution of 1,3-bis(2-aminophenyl)urea (**7**, 0.15 g, 0.6 mmol) in dry THF (150 mL), which was prepared by literature method,^{S3} were added dropwise simultaneously to a flask containing 0.8 L dry THF under stirring, refluxing and inert atmosphere over 2 h. After that, triethyl amine (1.0 mL) was added to this solution, and the mixture was stirred for an additional 3 h. Then the solvent was evaporated and the crude product was purified by column chromatography using 10 % MeOH/CH₂Cl₂ as the eluent to give the pure product as a white solid (0.12 g, 31%): M.p.: 234–235 °C. Anal. Calc. for $C_{33}H_{34}N_6O_7$ (M = 626.7): C, 63.25; H, 5.47;

N, 13.41. Found: C, 63.12; H, 5.39; N, 13.56. ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ 8.73 (s, 2H, Hb), 8.53 (s, 2H, Hc), 8.06 (s, 2H, Ha), 7.61 (m, 2H, H6), 7.51 (m, 2H, H3), 7.24 (d, J = 8.8 Hz, 4H, H7), 7.08 (m, 4H, H4 + H5), 6.72 (d, J = 8.8 Hz, 4H, H8), 3.97 (t, J = 4.8 Hz, 4H, H1'), 3.72 (t, J = 4.8 Hz, 4H, H2'), 3.60 (s, 4H, H3'). ¹³C NMR (100 MHz, DMSO- d_6): δ 153.9 (CO), 153.4 (CO), 132.7 (C), 131.5 (C), 131.4 (C), 124.0 (CH), 123.9 (CH), 120.2 (CH), 114.6 (CH), 70.2 (CH₂), 68.9 (CH₂), 67.5 (CH₂). IR (KBr, v/cm⁻¹): 3282 (N–H), 2925, 2869, 1644 (C=O), 1557, 1510, 1452, 1300, 1241. ESI-MS (*m*/*z*): [M–H]⁻ 625.2525, [M+Cl]⁻ 661.2291.

 \mathbf{L}^{n} (*n* = 2–4) were prepared in the same way as \mathbf{L}^{1} .

1,3-Bis(2-(4-(1,4,7,10,13-pentaoxa-tridecane-1,13-diyl)phenyl)urea-phenyl)urea, (L²): Yield 27%. M.p.: 210–211 °C. Anal. Calc. for C₃₅H₃₈N₆O₈ (M = 670.7): C, 62.68; H, 5.71; N, 12.53. Found: C, 62.84; H, 5.79; N, 12.41. ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ 8.76 (s, 2H, Hb), 8.53 (s, 2H, Hc), 7.98 (s, 2H, Ha), 7.61 (m, 2H, H6), 7.51 (m, 2H, H3), 7.29 (d, J = 8.8 Hz, 4H, H7), 7.08 (m, 4H, H4 + H5), 6.77 (d, J = 8.8 Hz, 4H, H8), 3.96 (m, 4H, H1'), 3.71 (m, 4H, H2'), 3.55 (m, 8H, H3'). ¹³C NMR (100 MHz, DMSO- d_6): δ 153.9 (CO), 153.3 (CO), 132.8 (C), 131.6 (C), 131.1 (C), 124.4 (CH), 123.8 (CH), 119.7 (CH), 114.2 (CH), 69.9 (CH₂), 69.0 (CH₂), 67.2 (CH₂). IR (KBr, ν/cm⁻¹): 3283 (N–H), 2922, 2870, 1640 (C=O), 1557, 1509, 1451, 1299, 1240. ESI-MS (m/z): [M–H]⁻ 669.2747, [M+CI]⁻ 705.2488.

1,3-Bis(2-(4-(1,4,7,10,13,16-hexaoxa-hexadecane-1,16-diyl)phenyl)urea-phenyl) urea, (L³): Yield 25%. M.p.: 203–204 °C. Anal. Calc. for $C_{37}H_{42}N_6O_9$ (M = 714.8): C, 62.17; H, 5.92; N, 11.76. Found: C, 62.04; H, 5.80; N, 11.91. ¹H NMR (400 MHz, DMSO- d_6 , ppm): δ 8.76 (s, 2H, Hb), 8.51 (s, 2H, Hc), 7.98 (s, 2H, Ha), 7.62 (m, 2H, H6), 7.52 (m, 2H, H3), 7.29 (d, *J* = 8.8 Hz, 4H, H7), 7.07 (m, 4H, H4 + H5), 6.78 (d, *J* = 8.8 Hz, 4H, H8), 3.98 (t, *J* = 4.8 Hz, 4H, H1'), 3.71 (t, *J* = 4.8 Hz, 4H, H2'), 3.55 (m, 12H, H3'). ¹³C NMR (100 MHz, DMSO- d_6): δ 153.9 (CO), 153.4 (CO), 132.8 (C), 131.6 (C), 131.1 (C), 124.3 (CH), 123.8 (CH), 119.8 (CH), 114.4 (CH), 70.0 (CH₂), 69.0 (CH₂), 67.2 (CH₂). IR (KBr, v/cm⁻¹): 3292 (N–H), 2922, 1647 (C=O), 1558, 1510, 1454, 1302, 1216. ESI-MS (*m*/*z*): [M–H]⁻ 713.3108, [M+Cl]⁻ 749.2862.

1,3-Bis(2-(4-(1,4,7,10,13,16,19-heptaoxa-nonadecane-1,19-diyl)phenyl)urea-phenyl) urea, (L⁴): Yield 20%. M.p.: 207–208 °C. Anal. Calc. for $C_{39}H_{46}N_6O_{10}$ (M = 758.8): C, 61.73; H, 6.11; N, 11.08. Found: C, 61.54; H, 6.02; N, 11.16. ¹H NMR (400 MHz, DMSO-*d*₆, ppm): δ 8.77 (s, 2H, Hb), 8.49 (s, 2H, Hc), 7.97 (s, 2H, Ha), 7.64 (m, 2H, H6), 7.52 (m, 2H, H3), 7.31 (d, *J* = 8.8 Hz, 4H, H7), 7.07 (m, 4H, H4 + H5), 6.80 (d, *J* = 8.8 Hz, 4H, H8), 3.99 (t, *J* = 4.8 Hz, 4H, H1'), 3.70 (t, *J* = 4.8 Hz, 4H, H2'), 3.54 (m, 16H, H3'). ¹³C NMR (100 MHz, DMSO-*d*₆): δ 153.9 (CO), 153.4 (CO), 132.8 (C), 131.6 (C), 130.9 (C), 123.9 (CH), 123.7 (CH), 119.8 (CH), 114.5 (CH), 69.9 (CH₂), 69.0 (CH₂), 67.2 (CH₂). IR (KBr, v/cm⁻¹): 3287 (N–H), 2872, 1646 (C=O), 1552, 1510, 1452, 1300, 1238. ESI-MS (*m*/*z*): [M–H]⁻ 757.3434, [M+Cl]⁻ 793.3189.

S3. X-ray crystallography

Diffraction data of the complexes were collected on a Bruker SMART APEX II diffractometer at 100 or 150 K with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). An empirical absorption correction using SADABS was applied for all data. The structures were solved by direct methods using the SHELXS program. All non-hydrogen atoms were refined anisotropically by full-matrix least-squares on F^2 by the use of the SHELXL program. Hydrogen atoms bonded to carbon and nitrogen were included in idealized geometric positions with thermal parameters equivalent to 1.2 times those of the atom to which they were attached. CCDC 1456031–1456038.

	1	2	3	4
Formula	$C_{105}H_{143}N_{12}O_{37}PK_2$	$C_{98}H_{128}N_{16}O_{28}PK$	$C_{116}H_{174}N_{17}O_{27}P$	$C_{360}H_{490}K_8N_{48}O_{133}S_4$
М	2274.48	2048.23	2269.69	8059.04
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	$P2_{1}/c$
a /Å	16.775(3)	14.990(4)	14.782(2)	16.6867(18)
b /Å	19.152(4)	16.270(4)	19.415(3)	19.400(2)
c /Å	20.418(4)	25.088(6)	21.552(3)	32.767(3)
$\alpha / ^{\circ}$	93.782(3)	99.668(4)	85.538(2)	90
$\beta / ^{\circ}$	113.688(2)	100.824(4)	85.989(2)	112.755(4) °
γ∕°	106.847(3)	105.587(4)	89.867(2)	90
$V/\text{\AA}^3$	5623.5(18)	5632(2)	6151.5(17)	9781.8(17)
Z	2	2	2	1
T/K	296(2)	296(2)	188(2)	100(2)
<i>F</i> (000)	2412	2172	2446	4266
D_{calc} /g cm ⁻³	1.343	1.208	1.225	1.368
μ / mm^{-1}	0.187	0.138	0.100	0.207
R(int)	0.1138	0.0743	0.0689	0.0357
Data/restraints/	19321/1464/	19655/2162/	24370/1200/	24420/2344/
parameters	1417	1282	1429	1473
GOF	1.186	1.093	1.095	1.143
$R1 [I > 2\sigma(I)]$	0.1465	0.1228	0.1300	0.0523
$wR2 [I > 2\sigma(I)]$	0.2739	0.2519	0.2572	0.1332

Table S1. Crystal data and refinement details for complexes 1-4.

	5	6	7	8
Formula	$C_{97}H_{132}N_{13}O_{35}K_2S$	C ₅₀ H ₇₅ N ₁₀ O ₁₄ Cl	C ₅₁ H ₇₈ N ₉ O ₁₄ Cl	$C_{51}H_{68}I_2N_{10}O_{10}$
М	2150.42	1075.65	1070.63	1234.95
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> 2(1)/ <i>c</i>	Cc	<i>P</i> 2(1)/ <i>c</i>	<i>P</i> -1
a /Å	18.0761(18)	20.611(5)	18.572(5)	12.2750(16)
b/Å	21.110(2)	31.842(8)	34.162(8)	13.0629(17)
c /Å	32.803(3)	8.872(2)	8.774(2)	19.863(3)
$\alpha / ^{\circ}$	90	90	90	71.072(2)
β / °	122.130(4)	104.307(5)	94.732(4)	78.8600(10)
γ∕°	90	90	90	70.582(2)
$V/\text{\AA}^3$	10600.1(18)	5642(2)	5548(2)	2828.3(6)
Ζ	4	4	4	2
T/K	173(2)	296(2)	173(2)	173(2)
<i>F</i> (000)	4556	2296	2304	1260
D_{calc} /g cm ⁻³	1.347	1.266	1.289	1.450
μ /mm ⁻¹	0.197	0.138	0.140	1.175
<i>R</i> (int)	0.1498	0.0408	0.0783	0.0236
Data/restraints/	18839/1408/	7028/2/	9855/1032/	9664/24/
parameters	1333	683	657	650
GOF	1.157	1.028	1.179	1.156
<i>R</i> 1 [$I > 2\sigma(I)$]	0.1846	0.0474	0.1890	0.0685
$wR2 [I > 2\sigma(I)]$	0.3121	0.1296	0.3684	0.1542

 Table S2. Crystal data and refinement details for complexes 5–8.

Table S3. Hydrogen bonds [Å and $\$] in the crystal structure of complex 1.

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathbf{H}\cdot\cdot\mathbf{A})$ (Å)	$d(\mathbf{D}\cdot\cdot\mathbf{A})$ (Å)	∠(DHA) ()
N1-H1 ·· O27	0.860	1.893	2.735	166
N2-H2 ·· O27	0.860	2.146	2.93	151
N3-H3A ·· O26	0.860	2.145	2.959	157
N4-H4A ·· O26	0.860	2.246	3.035	152
N5-H5A ·· O25	0.860	2.207	3.025	158
N6-H6A ·· O27	0.860	2.294	2.868	124

N7–H7 ···O26	0.860	1.97	2.794	160
N8-H8 ··· O25	0.860	2.107	2.941	163
N9-H9 ··· O25	0.860	1.897	2.736	165
N10-H10A ··· O25	0.860	2.488	3.231	145
N11-H11A ··· O28	0.860	2.177	3.005	161
N12-H12 ·· O26	0.860	1.974	2.813	165
O28-H28 ··· O1*	0.820	1.873	2.683	169

* [-x+1, -y+1, -z+2]

Table S4. Hydrogen bonds [Å and $\$] in the crystal structures of complex 2

D–Н…А	<i>d</i> (D–H) (Å)	$d(\mathbf{H} \cdot \cdot \mathbf{A})$ (Å)	$d(\mathbf{D}\cdot\cdot\mathbf{A})$ (Å)	∠(DHA)(°)
N1-H1 ···O28	0.860	2.012	2.816	155
N2-H2 ··· O25	0.860	1.945	2.804	178
N3-H3A ··· O25	0.860	2.23	2.936	139
N4-H4A ··· O26	0.860	1.941	2.798	174
N5-H5A ··· O28	0.860	2.233	2.987	146
N6-H6A ··· O28	0.860	1.938	2.733	153
N7-H7 ··· O25	0.860	1.997	2.777	150
N8-H8 ··· O26	0.860	2.062	2.88	158
N9-H9 ··· O26	0.860	1.922	2.766	167
N10-H10I ··· O27	0.860	1.975	2.795	159
N11-H11A ··· O27	0.860	1.967	2.825	175
N12-H12 ··· O25	0.860	1.935	2.782	168
C89-H89O5*	0.93	2.44	3.358(10)	167
C90-H90BO7*	0.97	2.36	3.07(2)	130
C90-H90BO6*	0.97	2.59	3.37(2)	138
C91-H91AO17*	0.96	2.52	3.46(2)	165
C91-H91BO8*	0.96	2.58	3.40(2)	144
C88-H88O17*	0.93	2.45	3.045(10)	122
C88-H88O16*	0.93	2.06	2.949(10)	159
C113-H11CO13*	0.96	2.60	3.01(2)	106

* [x, y, 1+z]

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathbf{H}\cdot\cdot\mathbf{A})$ (Å)	$d(\mathbf{D}\cdots\mathbf{A})$ (Å)	∠(DHA) (°)
N1-H1O22*	0.880	1.951	2.821	170
N2-H2O21*	0.880	2.266	2.799	119
N3-H3AO21*	0.880	2.004	2.846	160
N4-H4AO23*	0.880	1.86	2.734	172
N5-H5AO23*	0.880	1.849	2.72	170
N6-H6AO22*	0.880	2.443	3.062	128
N7-H7O21	0.880	2	2.841	160
N8-H8O22	0.880	2.163	2.796	128
N9-H9O24	0.880	2.12	2.918	150
N10-H10TO24	0.880	1.883	2.725	160
N11-H11WO24	0.880	1.95	2.79	159
N12-H12O24	0.880	2.113	2.914	151
C94-H94O18	0.95	2.48	3.331(11)	149
C94-H94O17	0.95	2.7	3.345(11)	126
C104-H10LO18	0.99	2.63	3.516(17)	149
C104-H10MO15	0.99	2.18	3.11(2)	155
C105-H10NO14	0.98	2.85	3.695(18)	145
С95-Н95О13	0.95	2.75	3.606(13)	151
C96-H96O7**	0.95	2.38	3.212(10)	146
C103-H10JO6**	0.98	2.74	3.591(15)	146
C103-H10IO2**	0.98	2.54	3.298(16)	134

 Table S5. Hydrogen bonds [Å and] in the crystal structure of complex 3.

*[x+1, y, z]; ** [x-1, y, z]

Table S6. Hydrogen bonding parameters (Å, °) for SO_4^{2-} binding in complex **4**.

N-H…O	Н…О	N…O	∠N-H…O
N1-H1…O1	2.11	2.936(3)	155
N2-H2…O1	2.21	3.036(3)	157
N3-H3…O2	2.17	2.960(3)	150
N4-H4…O4	2.26	3.054(3)	150
N5-H5…O1	2.21	3.029(3)	156
N6-H6…O1	2.11	2.922(3)	154

N7-H7···O3	2.16	2.911(3)	143
N8-H8…O4	2.13	2.917(3)	148.
N9-H9…O4	2.10	2.968(3)	169
N10-H10…O2	2.13	2.993(3)	167
N11-H11…O2	2.04	2.903(3)	168
N12-H12···O3	2.03	2.903(3)	169
С63-Н63В…О15	2.43	3.153(3)	130
C64-H64A…O18	2.52	3.206(3)	126

Table S7. The parameters (Å, °) of C–H··· π interactions involved in complex 4.

$C-H \cdot \cdot \pi$	$D(H \cdots Cg^*)$	$D(C \cdots Cg)$	D(H ·· plane)	$\angle C - H \cdots Cg$
С6–Н6А… π	3.26	3.87	3.04	124
С26-Н26 ··· π	3.16	3.73	2.99	120
С39–Н39… л	3.01	3.80	2.93	142
С59–Н59…π	2.96	3.60	2.90	126

* Cg represents the centroid of the aryl ring.

 Table S8. Hydrogen bonds [Å and] in the crystal structure of complex 5.

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathbf{H} \cdot \cdot \mathbf{A})$ (Å)	$d(\mathbf{D}\cdot\cdot\mathbf{A})$ (Å)	∠(DHA)()
N1-H1 ··· O20	0.88	2.488	3.316	157
N2-H2 ··· O19	0.88	2.011	2.873	166
N3-H3A ··· O22	0.88	2.418	3.188	146
N4-H4A ··· O22	0.88	2.000	2.871	170
N5-H5A ··· O22	0.88	2.187	2.954	145
N6-H6A ··· O20	0.88	2.07	2.941	170
N7-H7 ··· O20*	0.88	2.051	2.883	157
N8-H8 ··· O19*	0.88	2.365	3.08	139
N9-H9 ··· O19*	0.88	2.152	2.982	157
N10-H10A ·· O21*	0.88	2.024	2.901	174
N11-H11A ··· O21*	0.88	2.017	2.876	165
N12-H12 ·· O21*	0.88	2.455	3.235	148
C61-H61AO7*	0.99	2.33	3.25(3)	153

*[x, -y+1/2, z+1/2]

D–H…A	<i>d</i> (D–H) (Å)	$d(\mathbf{H}\cdot\cdot\mathbf{A})$ (Å)	$d(\mathbf{D}\cdot\cdot\mathbf{A})$ (Å)	∠(DHA) (%
N1-H1 ·· O1*	0.86	2.101	2.839	144
N2-H2 ··· O1*	0.86	2.199	2.921	141
N3-H3A ··· Cl1*	0.86	2.657	3.445	153
N4–H4A ···Cl1*	0.86	2.255	3.102	168
N5-H5A ···Cl1*	0.86	2.567	3.363	154
N6-H6A ··· Cl1*	0.86	2.440	3.231	153

Table S9. Hydrogen bonds [Å and $\]$ in the crystal structure of complex 6.

*[x, -y, z+1/2]

Table S10. Hydrogen bonds [Å and $\$] in the crystal structure of complex 7.

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathbf{H}\cdots\mathbf{A})$ (Å)	$d(\mathbf{D}\cdot\cdot\mathbf{A})$ (Å)	∠(DHA)()
N1-H1 ·· Cl1	0.88	2.601	3.400	151
N2-H2 ·· Cl1	0.88	2.290	3.148	169
N3-H3 ·· Cl1	0.88	2.317	3.166	170
N4-H4 ··· Cl1	0.88	2.601	3.381	151
N5-H5 ··· O9*	0.88	2.131	2.869	146
N6-H6 ··· O9*	0.88	2.249	2.959	140

*[x, -y+1/2, z-1/2]

 Table S11. Hydrogen bonds [Å and] in the crystal structure of complex 8.

D–H···A	<i>d</i> (D–H) (Å)	$d(\mathbf{H}\cdot\cdot\mathbf{A})$ (Å)	$d(\mathbf{D}\cdots\mathbf{A})$ (Å)	∠(DHA)(°)
N1-H1I2	0.88	2.829	3.671	161
N2-H2I2	0.88	2.753	3.611	165
N5-H5AI1*	0.88	2.927	3.72	151
N4-H4AI1*	0.88	2.797	3.662	168
N6-H6AI1*	0.88	2.959	3.801	161
N3-H3AI1*	0.88	2.87	3.708	160
C(51)-H(51C)O(8)	0.98	2.69	3.373(12)	127
C(51)-H(51C)O(7)	0.98	2.48	3.434(14)	165
C(54)-H(54A)O(6)	0.99	2.64	3.537(19)	151
C(54)-H(54B)O(4)	0.99	2.60	3.459(18)	145

*[-x+1,-y+1,-z+1]

Fig. S1. Crystal structure of the $HPO_4^{2^-}$ complex **1** including $[K([18]-crown-6)]^+$ countercations (left); the dimeric structure of complex **1** linked by two O–H···O bonds from $HPO_4^{2^-}$ ion to C=O (right). Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S2. Crystal structure of the PO_4^{3-} complex **2** including $[K([18]-crown-6)]^+$ and $Emim^+$ countercations (left), and packing mode of the $Emim^+$ cation and PO_4^{3-} anion in complex **2** (right). Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S3. Crystal structure of the PO_4^{3-} complex **3** including $[K([18]-crown-6)]^+$ and Emim⁺ countercations (left); b) packing mode of the Emim⁺ cation and PO_4^{3-} anion (right). Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S4. Crystal structure of the SO_4^{2-} complex **5** including $[K([18]-crown-6)]^+$ countercations. Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S5. a) Crystal structure of the chloride complex 6 including TPA⁺ countercations; b) the herringbone packing structure formed by L^2 and Cl^- ion. Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S6. a) Crystal structure of the chloride complex 7 including TEA⁺ countercations; b) the herringbone packing structure formed by L^3 and Cl^- ion. Non-interacting hydrogen atoms and solvents are omitted for clarity.

Fig. S7. Crystal structure of the iodide complex **8** including Emim⁺ countercations and the "head-to-tail" packing mode .Non-interacting hydrogen atoms and solvents are omitted for clarity.

S4. ¹H NMR studies

L ³	NHb NHc NHa 63 54 8
0.1 HPO₄	mult
0.2 HPO ₄	
0.3 HPO₄	r_d_n_t
0.4 HPO₄	
0.5 HPO₄	
complex 1 NHb NHa NHc	3 67 4 5 8
0.7 HPO₄	l
1.0 HPO₄	h u l
2.0 HPO ₄	hul
10.50 10.00 9.50 9.00	8.50 8.00 7.50 7.00 6.50

Fig. S8. ¹H NMR titration of L^3 (5×10⁻³ M) with [K([18]-crown-6]₂HPO₄ and the spectrum of complex **1** in acetone- $d_6/5\%$ H₂O (400 MHz, 298 K)

a) L₃	NHb, NHc NHa63 7, 5,4 18				
b) L ³ + 0.25 HPO ₄ ²⁻	Δ.	alt was th			
c) L ³ + 0.5 HPO ₄ ²⁻	3	6 7 4 5 8			
d) c) + 0.1 OH	!!	1 ml			
e) c) + 0.3 OH ⁻		1 ml			
f) c) + 0.5 OH ⁻	3 ₄	7/6 4,5 8			
g) L ³ + 0.5 PO ₄ ³⁻	3,	7,6 4,5 8			
h) f) + 0.1 Emim·l	X				
i) f) + 0.3 Emim·I		Ann			
j) f) + 0.5 Emim·I	~ ^	hunt			
k) complex 2	3	6 1 b'c' 4 5 8			
10.50 10.00 9	50 9.00 8.50 8.00	7.50 7.00 6.50			

Fig. S9. ¹H NMR titration of complex **1** ($\mathbf{L}^3 + 0.5$ equ HPO₄²⁻) (5×10⁻³ M) with TMAOH and Emim-I and the spectrum of complex **2** in acetone- $d_6/5\%$ H₂O (400 MHz, 298 K)

Fig. S10. Details of ³¹P NMR detection of the reversible interconversion of **1** and **2** upon acid/base and cation modulation and the ³¹P NMR spectra of complexes **1** and **2** in acetone- $d_6/5\%$ H₂O (162 MHz, 298 K, PPh₃ as an internal standard).

(1) ¹H NMR titrations

A stock solution of $\mathbf{L}^{\mathbf{n}}$ (n = 1–5) (5.0 mM) in DMSO- d_6 -10% H₂O (v/v) (0.5 mL) was prepared for the ¹H NMR titrations. Stock solutions of anion as [K(18-crown-6)]₂SO₄ (1 mL, 0.05–1 M) were prepared in DMSO- d_6 -40% H₂O (v/v). Small portions (2–5 µL) of the anion solution were added to the 0.5 mL host solution of $\mathbf{L}^{\mathbf{n}}$ in 5 mm-o.d. NMR tube, and the spectrum was recorded after each addition. The association constants (K) were determined by WinEQNMR^{S4} as shown below.

(2) Job's plots:

¹H NMR spectroscopy: Stock solutions of host (5.0 mM) and guest (5.0 mM) in DMSO-*d*₆-10% H₂O (v/v) (5.0 mL) were prepared in separate volumetric flasks. Ten 5 mm-o.d. NMR tubes were separately filled with a total of 500 µL solution of the host and guest in the following ratios (µL, host/guest) at 297 K: 10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9. The ¹H NMR spectra were obtained for each tube and the NHa signals were used to calculate the complex concentration, $[HG] = [H]_t \times (\delta_{obsd} - \delta_{free})/(\delta_{com} - \delta_{free})$, where $[H]_t$ is the total concentration of the host, δ_{obsd} is the chemical shift observed on every point, δ_{free} and δ_{com} corresponds to the chemical shifts of the free ligand and the complex. This value was plotted against the molar fraction of the host.

Fig. S11. (a) Experimental binding isotherms for ¹H NMR titration of L^3 and 0.5 equiv of $PO_4^{3^-}$ (as 18-C-6-K⁺ salt) with Emim⁺ (as Γ salt) and the corresponding fit using WinEQNMR. (b) The corresponding ¹H NMR spectra (acetone- d_6 -5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 10:13:05 on 08/02/2015

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 175000; DELTA M = 7.901; DELTA ML = 7.20 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

- 1 1 1.64808E+05 2.000E-01 1.238E+04 1.292E+00 K1
- 2 1 7.69410E+00 2.000E-01 2.301E-02 1.352E+00 SHIFT M
- 3 1 7.30734E+00 1.000E+00 1.596E-02 1.637E+00 SHIFT ML

0RMS ERROR = 3.44E-02 MAX ERROR = 5.96E-02 AT OBS.NO. 15

```
RESIDUALS SQUARED = 1.42E-02
```

```
RFACTOR = 0.4129 PERCENT
```

The binding of \mathbf{L}^n with $\mathrm{SO_4}^{2^-}$ anion in solution was investigated by ¹H NMR in acetone- $d_6/5\%$ H₂O, which demonstrated a 2:1 binding mode for \mathbf{L}^3 and $\mathrm{SO_4}^{2^-}$ (Fig. S11) as in complex **5**. Furthermore, when 0.5 equiv of Emim-I salt was added, some upfield shifts of the CH protons b' and c' on Emim⁺ can be observed (Fig. S12), implying the encapsulation of Emim⁺ cation (log K = 4.80, Fig. S13). This result indicates that the sulfate sandwich complex **5** can also accommodate the Emim⁺ cation in the "pre-organized" space of the polyether moieties.

Fig. S12. The 2:1 binding mode of L^3 and SO_4^{2-} (as 18-C-6-K⁺ salt) and the corresponding ¹H NMR titration spectra (acetone- d_6 -5% H₂O (v/v), 400 MHz)

Fig. S13. The upfield shift of the protons b' and c' in Emim^+ ring in SO_4^{2-} sandwich complex **5** and PO_4^{3-} sandwich complex **2** (acetone- d_6 -5% H₂O (v/v), 400 MHz).

0.00 mole ratio (salt / L3) NHb NHc NHa 7.∦ **41**5 8∦ 6 дЗи 0.25 SO42-M JM. 0.50 SO42- NHb NHa MHc **3** M 6∭ 4MM5 8 a' / b'∦C' shih + 0.1Emim⁺ М N M **₩** *h*hh + 0.2Emim* М + 0.3Emim⁺ N M Mr.M + 0.4Emim* MM λJ М + 0.5Emim* ٨٨ M мh + 0.6Emim* ΛÅ M. М بالاراله + 0.7Emim* N NI М dr.aly ,ML + 0.8Emim* A A м Arrh M + 0.9Emim⁺ A м Nr M + 1.0Emim⁺ М ,M M.M. + 1.2Emim* jn. M n n + 1.4Emim⁺ Į.M. بالاراله + 1.6Emim* In nr.n + 1.8Emim* 1n Mr.M + 2.0Emim* ULM بالاياله Emim I_Aa' b'_{A_A}c' 6.50 800 9.50 99**00** 8.50 7.50 77.000 DDM (t1)

19

Fig. S14. (a) Experimental binding isotherms for ¹H NMR titration of L^3 and 0.5 equiv SO₄²⁻ (as 18-C-6-K⁺ salt) with Emim⁺ (as I⁻ salt) and the corresponding fit using WinEQNMR. (b) The corresponding ¹H NMR spectra (acetone- d_6 -5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 15:22:20 on 08/02/2015

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 50000; DELTA M = 7.901; DELTA ML = 7.5 File prepared by M. J. Hynes, October 22 2000

 NO.
 A
 PARAMETER
 DELTA
 ERROR
 CONDITION
 DESCRIPTION

 1
 1
 6.31952E+04
 2.000E-01
 5.525E+03
 1.111E+00
 K1

 2
 1
 7.73068E+00
 2.000E-01
 8.134E-03
 1.278E+00
 SHIFT M

 3
 1
 7.57487E+00
 1.000E+00
 5.384E-03
 1.403E+00
 SHIFT ML

 0RMS
 ERROR = 1.25E-02
 MAX
 ERROR = 2.79E-02
 AT OBS.NO. 15

 RESIDUALS
 SQUARED = 1.87E-03
 A 1444 ERROR = 2.79E-02
 AT OBS.NO. 15

RFACTOR = 0.1465 PERCENT

<u>L</u> ¹			lr_l
L ¹ + 1.0 TEAI			lr_l
L ²		L	mlt
L ² + 1.0TEAI		l	mlrl
L ³			rtrt
L ³ + 1.0TEAI			ntr!
L ⁴			ult
L ⁴ + 1.0TEAI			ml l
ppm (t1) 10.50 10.00 9.50	9.00 8.50	8.00	7.50 7.00 6.50

Fig. S15. ¹H NMR of 1.0 equiv of I^- ion (as TEA⁺ salt, TEA = tetramethylammonium) added into L^n (5×10⁻³ M) in DMSO- d_6 (400 MHz, 298 K)

Fig. S16. ¹H NMR titration of L^3 (5×10⁻³ M) with Emim·I in acetone- $d_6/5\%$ H₂O (400 MHz, 298 K).

Table S12 Binding constants for L^{n} (n = 1–4) with Cl⁻ (as TEA⁺ salt) in DMSO-*d*₆-0.5% H₂O (v/v).

Fig. S17. Negative-ion mode ESI-MS spectrum for L^2 and $(TBA)_2SO_4$ in THF (TBA = tetrabutylammonium). $[M - H]^- 669.2747$, $[2M + SO_4]^{2-/2} 718.2786$, $[M + HSO_4]^- 767.2429$, $[M + TBASO_4]^- 1008.5241$.

Fig. S18. a) Job's plot of \mathbf{L}^1 with Cl^- (as TEA⁺ salt); b) the corresponding ¹H NMR spectra (DMSO- d_6 -0.5% H₂O (v/v), 400 MHz).

Fig. S19. a) Experimental binding isotherms for ¹H NMR titration of L^1 with Cl⁻ (as TEA⁺ salt) and the fit by WinEQNMR. b) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 15:26:10 on 02/04/2015

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 50000; DELTA M = 8.736; DELTA ML = 13.0 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION

K1

- 1 1 1.59517E+03 2.000E-01 1.292E+02 1.176E+00
- 2 1 8.84621E+00 2.000E-01 1.742E-02 1.615E+00 SHIFT M
- 3 1 9.67962E+00 1.000E+00 1.419E-02 1.423E+00 SHIFT ML

0RMS ERROR = 2.61E-02 MAX ERROR = 4.62E-02 AT OBS.NO. 1 RESIDUALS SQUARED = 6.82E-03 RFACTOR = 0.2461 PERCENT

Fig. S20. a) Job's plot of L^2 with Cl⁻ (as TEA⁺ salt); b) the corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Fig. S21. a) Experimental binding isotherms for ¹H NMR titration of \mathbf{L}^2 with Cl⁻ (as TEA⁺ salt) and the corresponding fit using WinEQNMR. b) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 14:22:34 on 01/05/2015

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 4000; DELTA M = 8.777; DELTA ML = 10.0 File prepared by M. J. Hynes, October 22 2000

```
NO. A
         PARAMETER
                        DELTA
                                   ERROR
                                             CONDITION
                                                           DESCRIPTION
        3.95148E+03 2.000E-01 3.599E+02 4.771E+00
   1
    1
                                                 K1
   2 1
        8.98167E+00 2.000E-01 4.463E-03 1.342E+00
                                                SHIFT M
        9.81604E+00 1.000E+00 6.340E-03 4.680E+00
                                                 SHIFT ML
  3 1
0RMS ERROR = 6.95E-03 MAX ERROR = 1.25E-02 AT OBS.NO. 12
RESIDUALS SQUARED = 4.83E-04
```

```
RFACTOR = 0.0643 PERCENT
```


Fig. S22. a) Job's plot of L^3 with Cl⁻ (as TEA⁺ salt); b) the corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Fig. S23. a) Experimental binding isotherms for ¹H NMR titration of L^3 with Cl⁻ (as TEA⁺ salt) and the corresponding fit using WinEQNMR; b) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 18:08:12 on 12/29/2014

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 2500; DELTA M = 8.776; DELTA ML = 10.0 File prepared by M. J. Hynes, October 22 2000

 NO.
 A
 PARAMETER
 DELTA
 ERROR
 CONDITION
 DESCRIPTION

 1
 1
 2.29039E+03
 2.000E-01
 1.800E+02
 1.716E+00
 K1

 2
 1
 8.87522E+00
 2.000E-01
 1.709E-02
 1.381E+00
 SHIFT M

 3
 1
 9.81195E+00
 1.000E+00
 1.660E-02
 1.919E+00
 SHIFT ML

0RMS ERROR = 2.72E-02 MAX ERROR = 4.94E-02 AT OBS.NO. 1 RESIDUALS SQUARED = 7.40E-03 RFACTOR = 0.2537 PERCENT

Fig. S24. a) Job's plot of L^4 with Cl⁻ (as TEA⁺ salt); b) the corresponding ¹H NMR spectra (DMSO- d_6 -0.5% H₂O (v/v), 400 MHz).

Fig. S25. a) Experimental binding isotherms for ¹H NMR titration of L^4 with Cl⁻ (as TEA⁺ salt) and the corresponding fit using WinEQNMR; b) The corresponding ¹H NMR spectra (DMSO-*d*₆-0.5% H₂O (v/v), 400 MHz).

Calculations by WinEQNMR Version 1.20 by Michael J. Hynes Program run at 08:55:14 on 12/26/2014

IDEAL DATA FOR 1:1 COMPLEX USING CHEMICAL SHIFT (TEST11.FIT) Reaction: M + L = MLFILE: TEST11.FIT IDEAL DATA: K1 = 47500; DELTA M = 8.775; DELTA ML = 11.0 File prepared by M. J. Hynes, October 22 2000

NO. A PARAMETER DELTA ERROR CONDITION DESCRIPTION 1 1 1.53944E+03 2.000E-01 1.063E+02 2.177E+00 K1 2 1 8.82800E+00 2.000E-01 1.268E-02 1.447E+00 SHIFT M 3 1 9.78248E+00 1.000E+00 1.419E-02 2.304E+00 SHIFT ML 0RMS ERROR = 2.04E-02 MAX ERROR = 3.50E-02 AT OBS.NO. 11 **RESIDUALS SQUARED = 4.16E-03**

RFACTOR = 0.1914 PERCENT

References

- S1. (a) D. Marquis, J.-P. Desvergne and H. Bouas-Laurent, J. Org. Chem. 1995, 60, 7984–7996; (b) Y. Chen and G. L. Baker, J. Org. Chem. 1999, 64, 6870–6873.
- S2. G. C. Eastmond and J. Paprotny, *Polymer* 2002, **43**, 3455–3468.
- S3. (a) S. J. Brooks, P. A. Gale and M. E. Light, *Chem. Commun.* 2006, 4344–4346; (b) C. Jia, B. Wu, S. Li, Z. Yang, Q. Zhao, J. Liang, Q.-S. Li and X.-J. Yang, *Chem. Commun.* 2010, 46, 5376–5378.