Expedient Synthesis of Tetrahydroquinoline-3-Spirohydantoin Derivatives *via* Lewis Acid-Catalyzed *tert*-Amino Effect Reaction

John F. Briones and Gregory S. Basarab

Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States

Email: Greg.Basarab@uct.ac.za

Supporting Information

Table of Contents

1. General Methods	S2
2. General procedure for the synthesis of 2-dialkylaminebenzaldehydes <i>via</i> S _n Ar displacement	S2
3. General procedure for the Knoevenagel condensation between 2- dialkylaminobenzaldehydes and ethyl nitroacetate	S5
4. Chemoselectivity study for the T-reaction: General procedure for the Mg(OTf) ₂ - catalyzed T-reaction	S6
5. Procedure for the synthesis of spirohydantoin 15	S7
6. General procedure for the synthesis of spirohydantoins from Knoevenagel adducts	S9
7. Procedure for the synthesis of spirohydantoins 23 and <i>epi</i> -C3-23	S10
8. References	S14
9. X-ray crystallographic data for 5a	S14
10. Spectral data and full characterization of spirohydantoin products	S22
11. ¹ H and ¹³ C NMR of the spirohydantoin products	S35

1. General Methods

All of the solvents and reagents used were obtained commercially and used as such unless noted otherwise. ¹H NMR spectra were recorded in CDCl₃ or DMSO-d6 solutions at 300 K using a Bruker Ultrashield 300 MHz instrument or a Bruker Ultrashield 400 MHz instrument. ¹³C NMR spectra were recorded in DMSO-d6 solutions at 300 K and 126 MHz using a Bruker DRX-500 500 MHz instrument with a QNP cryoprobe or at 101 MHz using a Bruker Ultrashield 400 MHz instrument or at 75.5 MHz using a Bruker Ultrashield 300 MHz instrument. ¹⁹F NMR spectra were recorded at 282 MHz in CDCl₃ or DMSO-d6 solutions at 300 K using a Bruker Ultrashield 300 MHz instrument. Chemical shifts are reported as parts per million relative to TMS (0.00) for ¹H and ¹³C NMR and CFCl₃ for ¹⁹F NMR. NMR spectra were processed via Spectrus Processor, ACDLabs. High-resolution mass spectra (HRMS) were obtained using a hybrid quadrupole time-of-flight mass spectrometer (microTOFq II, Bruker Daltonics) in ESI+ mode. Silica gel chromatographies were performed on an ISCO Combiflash Companion Instruments using ISCO RediSep[®] Flash Cartridges (particle size: 35-70 microns) or Silacycle SiliaSep[®] Flash Cartridges (particle size: 40-63 microns). All compounds tested possessed a purity of $\geq 95\%$. When not indicated, compound intermediates and reagents were purchased from chemical supply houses. Compounds were determined to be greater than 95% pure via analysis by reversed phase UPLC-MS using a Waters Acquity UPLC instrument with DAD and ELSD and a UPLC HSS T3, 2.1 x 30 mm, 1.8 um column and a gradient of 2 to 98% CH₃CN in water with 0.1% formic acid over 2.0 min at 1 mL/min. Injection volume was 1 µL and the column temperature was 30 °C. Detection was based on electrospray ionization (ESI) in positive and negative polarity using Waters ZQ mass spectrometer (Milford, MA, USA), diode-array UV detector from 210 to 400 nm, and evaporative light scattering detector (Sedex 75, Sedere, Alfortville Cedex, France). HPLC purification of spirohydantoins were performed using Gilson preparative HPLC with 333/334 pumps, 215 autosampler, and 156 UV/VIS running Trilution 3.0 software using Waters Atlantis T3 19x100mm 5µm column.

2. General procedure for the synthesis of 2- dialkylamino benzaldehydes *via* S_nAr displacement

To a 250-mL round bottom flask equipped with magnetic stirrer and reflux condenser were added 2-fluorobenzaldehyde (1 equiv), amine (1-5 equiv) and K₂CO₃ (1.2-2 equiv). The mixture was suspended in DMF and the resulting mixture was heated to reflux until all the aldehyde has been consumed as determined by UPLC-MS. The reaction was then cooled to rt and quenched with water and extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude material

was often pure enough and was used without further purification. Otherwise, pure 2dialkylaminobenzaldehydes can be obtained *via* purification using automated flash chromatography.

Representative Aldehyde Examples:

2-(Benzyl(methyl)amino)benzaldehyde. To a 500-mL round bottom flask equipped with magnetic stirrer and reflux condenser were added 2-fluorobenzaldehyde (10.0 g, 80.57 mmol), *N*-methyl-1-phenylmethanamine (11.7 g, 96.69 mmol) and K₂CO₃ (13.5 g, 96.69 mmol). The mixture was suspended in 100 mL DMF and the resulting mixture was heated to reflux until all the aldehyde had been consumed. After 6 h, the reaction was then cooled to rt and quenched with water and extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude material was eluted through short silica with CH_2Cl_2 afford the 2plug to pure product, а (benzyl(methyl)amino)benzaldehyde (18.1 g, >99% yield) as yellow oil. ¹H NMR(400 MHz, CDCl₃) δ 10.43 (s, 1H), 7.84 (dd, J=9.0, 3.0 Hz, 1H), 7.50 (t, J=9.0Hz), 7.28-7.35 (m, 5H), 7.12 (t, 2H), 4.36 (s, 2H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2, 155.7, 137.4, 134.7, 130.2, 128.6, 128.0, 127.5, 121.7, 119.6, 62.4, 42.4; HRMS (ES) MH⁺ calcd for C₁₅H₁₆NO 225.1154, found 225.1157.

2-(Benzyl(methyl)amino)nicotinaldehyde. To a 100-mL round bottom flask equipped with magnetic stirrer and reflux condenser were added 2-fluoronicotinalldehyde (0.969 g, 7.99

mmol), N-methyl-1-phenylmethanamine (1.00 g, 7.99 mmol) and K₂CO₃ (2.21 g, 15.99 mmol). The mixture was suspended in 20 mL DMF and the resulting mixture was heated to reflux until all the aldehyde has been consumed. After 6 h, the reaction was then cooled to rt and quenched with water and extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The material was pure enough and was for without further purification 2used next step affording (benzyl(methyl)amino)nicotinaldehyde (1.81 g, 97%) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 10.03 (s, 1H), 8.38 (d, J=5.0 Hz, 1H), 8.02 (d, J=5 Hz, 1H), 7.29-7.37 (m, 5H), 6.85 (d, J=5.0 Hz, 1H), 4.85 (s, 2H), 3.04 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 189.6, 160.7, 152.4, 141.3, 137.7, 128.7, 127.6, 127.3, 117.5, 114.2, 59.9, 40.5; HRMS (ES) MH⁺ calcd for C₁₄H₁₅N₂O 227.1140, found 227.1147.

5-Bromo-2-((2S,6R)-2,6-dimethylmorpholino)-3,4-difluorobenzaldehyde, 50. To a 250mL round bottom flask equipped with magnetic stirrer and reflux condenser were added 5bromo-2,3,4-trifluorobenzaldehyde (1.00 g, 4.18 mmol), cis-2,6-dimethylmorpholine (0.497 g, 4.18 mmol) and *N*,*N*-diisopropylethylamine (0.877 mL, 5.02 mmol). The mixture was suspended in 20 mL CH₃CN, and the resulting mixture was heated to reflux until all the aldehyde has been consumed. After 5 h, the reaction was then cooled to rt and quenched with water and extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude material was purified using ISCO (isocratic, 5% hexane/EtOAc) to afford the product 5-bromo-2-((2R,6S)-2,6dimethylmorpholino)-3,4-difluorobenzaldehyde, **50** (1.00 g, 72% yield) as yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 10.3 (s, 1H), 7.83 (dd, *J_{FH}*=9.0, 3.0 Hz, 1H), 3.84 (m, 2H), 3.04 (m, 4H), 1.23 (d, *J*=9.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 189.6, 154.3 (dd, *J_{CF}*=257.3, 14.3 Hz), 150.3 (dd, *J_{CF}*=255.0, 13.5 Hz) 142.4, 128.8, 128.1, 105.8, 105.7, 72.2, 58.2, 18.7; ¹⁹F NMR (282 MHz, CDCl₃) δ -119.0, -141.3; HRMS (ES) MH⁺ calcd for C₁₃H₁₅BrF₂NO₂ 334.0210, found 334.0700.

3. General procedure for the Knoevenagel condensation between 2dialkylaminobenzaldehydes and ethyl nitroacetate¹

A mixture of ethyl nitroacetate (1 equiv) and 2-dialkylamino benzaldehyde (1 equiv) in a 250mL round bottom flask was dissolved in 20 mL anhydrous THF. The resulting solution was cooled to 0 °C using an ice/water bath followed by careful addition of TiCl₄ solution (1M in DCM or toluene, 2 equiv) *via* syringe. After 5 min of stirring, 4-methylmorpholine (4 equiv) was added to the brownish mixture dropwise over 10 min. The reaction was then stirred for additional 4 h; then water was added to quench the reaction. The mixture was extracted with EtOAc 3x, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude material was purified using ISCO automated flash chromatography with hexane/EtOAc as solvent system.

Representative Example: Synthesis of ethyl 3-(2-(benzyl(methyl)amino)phenyl)-2nitroacrylate, 4

Ethyl 3-(2-(benzyl(methyl)amino)phenyl)-2-nitroacrylate, 4. A mixture of ethyl nitroacetate (0.591 g, 4.44 mmol) and 2-(benzyl(methyl)amino)benzaldehyde (1.00 g, 4.44 mmol) in a 250-mL round bottom flask was dissolved in 20 mL anhydrous THF. The resulting solution was cooled to 0 °C using an ice/water bath followed by careful addition of TiCl₄ solution (1M in DCM) *via* syringe (8.9 mL, 8.88 mmol). After 5 min of stirring, 4-methylmorpholine (1.95 mL, 17.7 mmol) was added to the brownish mixture dropwise over 10 min. The reaction was then stirred for additional 4 h; then water was added to quench the reaction. The mixture was extracted with EtOAc 3x, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The crude material was purified using ISCO automated flash chromatography with hexane/EtOAc as solvent system to afford the product **4** (1.10 g, 73% yield) as orange oil and as a mixture of *E/Z* isomers

(~1.4:1). The material was used for next step as a mixture of regioisomers. ¹H NMR (500 MHz, CDCl₃) δ ppm 8.57 (s, 1 H) 8.12 (s, 1 H) 7.25 - 7.45 (m, 21 H) 7.05 - 7.13 (m, 5 H) 4.32 - 4.43 (m, 5 H) 4.18 (s, 5 H) 2.76 (s, 7 H) 1.28 - 1.40 (m, 8 H); ¹³C NMR (75 MHz, CDCl₃) δ 189.6, 142.4, 128.8, 128.1, 105.8, 105.7, 72.2, 58.2, 18.7; HRMS (ES) MH⁻calcd for C₁₉H₁₉N₂O₄ 339.1350, found 339.2305.

4. Chemoselective study for the T-reaction: General procedure for the Mg(OTf)₂-catalyzed T-reaction.

A mixture of Knoevenagel adduct (mixture of E/Z isomers) and Mg(OTf)₂ was weighed in a 25-ml one-necked round bottom flask equipped with magnetic stirrer. The mixture was dissolved with 10 mL CH₃CN and the resulting orange solution was heated to reflux until all the starting material has been converted to the T-reaction products. When the conversion was completed (as monitored by UPLC-MS), the reaction was cooled to rt and then concentrated *in vacuo*. Diastereomeric ratio and regioisomeric ratio were determined using ¹H NMR analysis of the crude mixture.

Representative Example: Synthesis of ethyl 1-methyl-3-nitro-2-phenyl-1,2,3,4tetrahydroquinoline-3-carboxylate, 5

A mixture of Knoevenagel adduct above (0.50 g, 1.47 mmol) and Mg(OTf)₂ (0.047 g, 0.15 mmol) was weighed in a 25-ml one-necked round bottom flask equipped with magnetic stirrer. The mixture was dissolved with 10 mL CH₃CN and the resulting orange solution was heated to reflux until all the starting material has been converted to the T-reaction products as monitored by UPLC-MS. After ~0.5 h, the reaction was cooled to rt then concentrated *in vacuo*. The adduct was used for next step as a mixture of E/Z isomers. Diastereomeric ratio and regioisomeric ratio were determined using ¹H NMR analysis of the crude mixture. Pure tetrahydroquinoline-nitroester product was obtained after purification using ISCO automated flash chromatography using 20% EtOAc in hexanes as solvent system to afford the product

(0.492 g, 98%) as yellow oil. The oil was re-dissolved in 1:1 hexane/EtOAc and the major diastereomer crystallized quickly to afford the pure tetrahydroquinoline nitroester **5a** (57% yield after recrystallization). The structure of **5a** was confirmed by X-ray crystallographic analysis.

(2S,3R)-ethyl 1-methyl-3-nitro-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate, 5a. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.19 - 7.36 (m, 6 H) 7.08 (d, *J*=7.5 Hz, 1 H) 6.72 (t, *J*=7.2 Hz, 1 H) 6.66 (d, *J*=8.3 Hz, 1 H) 5.41 (d, *J*=2.0 Hz, 1 H) 4.11 (qd, *J*=7.1, 1.0 Hz, 2 H) 3.70 (d, *J*=17.3 Hz, 1 H) 3.59 (d, *J*=17.3 Hz, 1 H) 2.96 (s, 3 H) 1.13 - 1.23 (m, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 164.5, 143.4, 137.7, 129.2, 128.9, 128.8, 127.8, 116.8, 114.8, 109.9, 92.9, 65.8, 63.2, 37.3, 30.4, 13.6; HRMS (ES) M-H calcd for C₁₉H₁₉N₂O₄ 339.1350, found 339.1379.

5. Procedure for the synthesis of spirohydantoin (2'S,3'R)-1'-methyl-2'phenyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione, 15

To a 25 mL round bottom flask equipped with a magnetic stirrer were added **5a** (0.1 g, 0.29 mmol) and zinc dust (0.096g, 1.47 mmol). The mixture was suspended in acetic acid (5 mL)

and the resulting mixture was stirred at rt. After 2 h, the reaction was filtered through celite and concentrated *in vacuo* to afford the amine derivative **13**, which was re-dissolved in acetic acid (5 mL). The solution was charged with potassium cyanate (0.024 g, 0.29 mmol) and the reaction was stirred overnight at rt. The reaction was then quenched with water and extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated *in vacuo* to afford the crude urea **14**. The urea was then transferred to a 25 mL round bottom flask equipped with magnetic stirrer, then dissolved in absolute EtOH. The solution was treated with NaOEt in EtOH and, after 30 min, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered and then concentrated *in vacuo* to afford the spirohydantoin **15** (0.085g, 98% yield) as an off-white solid.

(2S,3R)-ethyl 3-amino-1-methyl-2-phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate, 13. ¹H NMR (500 MHz, CDCl₃) δ ppm 7.61 - 7.83 (m, 2 H) 7.23 - 7.34 (m, 3 H) 7.07 - 7.18 (m, 2 H) 6.98 (d, *J*=7.6 Hz, 2 H) 6.76 (d, *J*=8.2 Hz, 1 H) 6.64 (t, *J*=7.3 Hz, 1 H) 4.74 (s, 1 H) 4.02 (dq, *J*=10.7, 7.1 Hz, 1 H) 3.89 (dq, *J*=10.7, 7.1 Hz, 1 H) 3.48 (d, *J*=17.7 Hz, 1 H) 3.10 (d, *J*=17.7 Hz, 1 H) 2.93 (s, 3 H) 0.98 (t, *J*=7.3 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 141.2, 128.6, 127.3, 127.1, 126.9, 125.1, 115.9, 112.8, 109.1, 64.9, 61.3, 58.3, 35.4, 29.1, 11.4; HRMS (ES) MH⁺ calcd for C₁₉H₂₃N₂O₂ 311.1754, found 311.1752.

(**2'S,3'R)-1'-methyl-2'-phenyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5dione, 15**. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.57 (s, 1 H) 8.20 (s, 1 H) 7.21 - 7.29 (m, 3 H) 7.12 (t, *J*=7.7 Hz, 1 H) 6.98 - 7.08 (m, 3 H) 6.69 (d, *J*=8.5 Hz, 1 H) 6.62 - 6.67 (m, 1 H) 4.43 (s, 1 H) 3.05 (d, *J*=16.3 Hz, 1 H) 2.77 (s, 3 H) 2.75 (d, *J*=16.3 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 154.9, 143.7, 137.0, 127.8, 126.8, 126.6, 116.9, 115.0, 109.6, 67.7, 60.4, 36.6, 31.7; HRMS (ES) MH⁺ calcd for C₁₈H₁₉N₃O₂ 308.1394, found 308.1381.

6. General procedure for the synthesis of spirohydantoins from Knoevenagel adducts.

To a 25 mL round bottom flask equipped with magnetic stirrer were added the Knoevenagel adducts and $Mg(OTf)_2$. The mixture was dissolved in CH₃CN and heated to reflux until all the starting material was consumed after which the reaction was cooled to rt then concentrated *in vacuo*. The crude material was then re-dissolved in acetic acid and Zn dust was added. After 1-2 h of stirring at rt, the reaction was filtered thru celite and concentrated *in vacuo* to afford the amine derivatives as a mixture of diastereomers. The diastereomers can either be separated at the amine stage (**Procedure A**) or at the spirohydantoin stage (**Procedure B**) *via* chromatography to afford the pure amines or spirohydantoin products.

Procedure A: To a 25 mL round bottom flask equipped with magnetic stirrer were added the diasteromerically pure amine from above and potassium cyanate (1-2 equiv). The mixture was dissolved in acetic acid and the resulting solution was stirred overnight at rt. The reaction was then concentrated *in vacuo*, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered and then concentrated *in vacuo* to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and then 21% wt NaOEt in EtOH (1-2 equiv) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using chromatography to afford the pure spirohydantoin product as white powdery solid.

Procedure B. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine from above and potassium cyanate (1-2 equiv). The mixture was dissolved in acetic acid and the resulting solution was stirred overnight at rt. The reaction was then concentrated in vacuo, then re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered and then concentrated *in vacuo*

to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and 21% NaOEt in EtOH (1-2 equiv) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When reaction was complete, the solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids.

7. Procedure for the synthesis of spirohydantoins 23 and epi-C3-23

A mixture of ethyl nitroacetate (0.40 g, 0.35 mL, 2.99 mmol) and **19** (1.0 g, 2.99 mmol) in a 250-mL round bottom flask was dissolved in 20 mL anhydrous THF. The resulting solution was cooled to 0 °C using an ice/water bath followed by careful addition of TiCl₄ solution (6 mL, 5.99 mmol, 1M in DCM) *via* syringe. After 5 min of stirring, the brownish mixture was treated with 4-methylmorpholine (1.3 mL, 11.9 mmol) by dropwise addition over 10 min. The reaction was stirred for additional 12 h and then water was added to quench the reaction. The mixture was extracted with EtOAc 3x, and the combined organic layers were washed with brine, dried over Na₂SO₄, filtered and then concentrated *in vacuo*. The crude material was purified using ISCO automated flash chromatography with hexane/EtOAc as solvent system to afford **20** (1.14 g, 2.54 mmol, 85% yield) as red orange oil and as mixture of *E/Z* regioisomers.

To a 25 mL round bottom flask equipped with magnetic stirrer were added **20** (1.0 g, 2.23 mmol) and Mg(OTf)₂ (0.072 g, 0.22 mmol). The mixture was dissolved in CH₃CN and heated to 120 °C until all the starting material was consumed. After 6 h, the reaction was cooled to rt and then concentrated *in vacuo*. The crude material was then re-dissolved in acetic acid and Zn dust (0.437 g, 6.68 mmol) was added. After 3 h of stirring at rt, the reaction was filtered thru celite and concentrated *in vacuo*. The crude was purified using ISCO automated flash chromatography using DCM/EtOAc as solvent system to afford **22** (0.914 g, 98% yield) as a mixture of diastereomers. The diastereomers were separated using Xbridge C18 column (19 mm x 150 mm 5 μ m) mobile phase A: H₂O with 0.2% NH₄OH, mobile phase B: CH₃CN, gradient 50-80% B over 5 min. The latter material was contaminated with presumably a third diastereomer and purified final material was obtained in the subsequent step.

rac-(2R,4S,4aS,5S)-Ethyl 5-amino-8-bromo-9,10-difluoro-2,4-dimethyl-1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylate, 22. ¹H NMR (300 MHz, CD₃OD) δ ppm 7.05 (d, *J*=7.2 Hz, 1 H) 4.79 (s, 3 H) 4.07 - 4.34 (m, 3 H) 3.53 - 3.82 (m, 2 H) 3.14 - 3.40 (m, 2 H) 2.87 - 3.09 (m, 2 H) 2.67 - 2.86 (m, 1 H) 1.24 (t, *J*=7.2 Hz, 3 H) 1.12 (t, *J*=6.8 Hz, 6 H); ¹³C NMR (75 MHz, CD₃OD) δ 174.3, 151.1 (dd, *J*cf=240.0, 15.0 Hz), 144.0 (dd, *J*cf=244.5, 16.5 Hz), 133.7, 128.5, 122.1, 97.4 (d, *J*cf=18.5 Hz), 74.5, 72.3, 70.3, 62.7, 58.3, 57.5, 36.3,

18.5, 18.4, 14.2; ¹⁹F NMR (282 MHz, CD₃OD) δ -134.9, -148.5; HRMS (ES) MH⁺ calcd for C₁₇H₂₂BrF₂N₂O₃ 419.0737, found 419.0741.

rac-(2R,4S,4aS,5R)-Ethyl 5-amino-8-bromo-9,10-difluoro-2,4-dimethyl-1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylate, *epi*-C3-22. ¹H NMR (300 MHz, METHANOL-*d*4) δ ppm 6.97 (d, *J*=7.0 Hz, 1 H) 4.15 - 4.35 (m, 3 H) 4.03 (ddd, *J*=13.0, 2.1, 1.0 Hz, 1 H) 3.84 (ddd, *J*=10.2, 6.2, 2.3 Hz, 1 H) 3.59 - 3.74 (m, 1 H) 3.47 (d, *J*=8.7 Hz, 1 H) 3.20 - 3.39 (m, 1 H) 3.08 (d, *J*=14.7 Hz, 1 H) 2.78 - 2.99 (m, 1 H) 2.58 (d, *J*=14.7, 1 H) 1.35 (t, *J*=9 Hz, 3 H), 1.18 (d, *J*=6 Hz, 3H), 1.13 (d, *J*=6 Hz, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 176.2, 151.3 (dd, *J*cf=241.5, 15.0 Hz), 143.8 (dd, *J*cf=243.8, 15.8 Hz), 134.4, 127.9, 121.9, 97.1 (d, *J*cf=18.8 Hz), 75.5, 73.3, 68.1, 63.3, 59.5, 57.9, 41.6, 18.7, 18.6, 14.4; ¹⁹F NMR (282 MHz, CD₃OD) δ -134.8, -149.5; HRMS (ES) MH⁺ calcd for C₁₇H₂₂BrF₂N₂O₃ 419.0737, found 419.0772.

To a 25 mL round bottom flask equipped with magnetic stirrer were added **22** (0.1 g, 0.24 mmol) and potassium cyanate (0.023 g, 0.29 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was concentrated *in vacuo*, then re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in 10

mL EtOH, and then 21% NaOEt in EtOH (0.30 mL, 0.29 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the pure spirohydantoin product **23** (0.092 g, 93% yield) as white powdery solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 10.87 (s, 1 H) 8.37 (s, 1 H) 7.12 (d, *J*=6.9 Hz, 1 H) 3.88 (d, *J*=13.2 Hz, 1 H) 3.65 - 3.77 (m, 1 H) 3.43 - 3.53 (m, 1 H) 3.10 (d, *J*=9.1 Hz, 1 H) 2.85 - 2.97 (m, 3 H) 1.18 (t, *J*=7.1 Hz, 1 H) 0.88 (d, *J*=5 Hz, 3 H) 0.85 (d, *J*=5 Hz, 3 H); ¹³C NMR (125 MHz, DMSO-d6) δ 173.4, 155.6, 148.2 (dd, *J*cf=243.8, 15.0 Hz), 140.7 (dd, *J*cf=242.5, 15.0 Hz), 133.1, 125.5, 121.9, 97.9 (d, *J*cf=18.8 Hz), 72.6, 71.2, 66.3, 62.6, 55.9, 37.2, 18.3, 18.1; ¹⁹F NMR (470 MHz, DMSO-d6) δ -73.43; HRMS (ES) MH⁻ calcd for C₁₆H₁₅BrF₂N₃O₃ 414.0270, found 414.0267.

To a 25 mL round bottom flask equipped with magnetic stirrer were added *epi*-C3-22 (0.1 g, 0.24 mmol) and potassium cyanate (0.023 g, 0.29 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was concentrated *in vacuo*, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in 10 mL EtOH, and 21% NaOEt in EtOH (0.30 mL, 0.29 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified

using chromatography to afford the pure spirohydantoin product **23** (0.094 g, 95% yield) as white powdery solid. ¹H NMR (500 MHz, DMSO- d_6) δ ppm 10.93 (s, 1 H) 8.05 (s, 1 H) 7.05 (d, *J*=6.9 Hz, 1 H) 3.74 (d, *J*=13.6 Hz, 1 H) 3.50 - 3.59 (m, 1 H) 3.22 - 3.32 (m, 1 H) 3.16 - 3.21 (m, 1 H) 2.75 - 2.85 (m, 1 H) 2.57 - 2.69 (m, 2 H) 2.35 - 2.41 (m, 1 H) 0.96 (d, *J*=6.0 Hz, 3 H) 0.80 (d, *J*=6.3 Hz, 3 H); ¹³C NMR (125 MHz, DMSO-d6) δ 175.7, 156.1, 148.6 (dd, *J*cf=238.8, 13.8 Hz), 141.4 (dd, *J*cf=243.8, 17.5 Hz), 133.1, 126.3, 121.6, 94.9 (d, *J*cf=18.8 Hz), 72.8, 71.2, 64.9, 63.2, 55.5, 37.5, 18.1, 17.8; ¹⁹F NMR (470 MHz, DMSO-d6) δ -73.40; HRMS (ES) MH⁻ calcd for C₁₆H₁₅BrF₂N₃O₃ 414.0270, found 414.0279.

8. References

. . .

[1] Wortman, L.; Koppitz, M.; Menzenbach, M.; Kosemund, D.; Schmees, N.; Muhn, H.-P.; Frenzel, T.; Liesener, F. P.; Schrey, A. K.; Kuehne, R.; PCT Int. Appl. (2009), WO 2009013354.

9. X-ray crystallography data for 5a

Table 1. Crystal data and structure refinement for **5a**.

Identification code	5a
Empirical formula	C19 H20 N2 O4
Formula weight	340.37
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/n

Unit cell dimensions	a = 7.7910(4) Å	□ = 90°.	
	b = 13.1164(6) Å	$\square = 96.8950(10)^{\circ}.$	
	c = 16.9526(8) Å	$\Box = 90^{\circ}$.	
Volume	1719.85(14) Å ³		
Z	4		
Density (calculated)	1.315 Mg/m ³		
Absorption coefficient	0.093 mm ⁻¹		
F(000)	720		
Crystal size	0.28 x 0.16 x 0.10 mm ³		
Theta range for data collection	1.97 to 30.57°.		
Index ranges	-11<=h<=11, -18<=k<=18, -24<=l<=24		
Reflections collected	27526		
Independent reflections	5271 [R(int) = 0.0306]		
Completeness to theta = 30.57°	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²	2	
Data / restraints / parameters	5271 / 0 / 226		
Goodness-of-fit on F ²	1.048		
Final R indices [I>2sigma(I)]	R1 = 0.0515, wR2 = 0.1438		
R indices (all data)	R1 = 0.0798, wR2 = 0.1659		
Largest diff. peak and hole	0.357 and -0.276 e.Å $^{\text{-3}}$		

	X	у	Z	U(eq)
O(1)	4407(2)	6984(1)	2379(1)	72(1)
O(2)	6449(2)	6918(2)	1647(1)	95(1)
O(3)	3372(2)	6646(1)	-243(1)	55(1)
O(4)	3292(2)	5624(1)	813(1)	72(1)
N(1)	2192(2)	8778(1)	1659(1)	45(1)
N(2)	4966(2)	7087(1)	1749(1)	51(1)
C(1)	4638(2)	8275(1)	609(1)	41(1)
C(2)	4881(2)	9185(1)	1147(1)	39(1)
C(3)	6307(2)	9817(1)	1146(1)	49(1)
C(4)	6539(2)	10659(1)	1636(1)	58(1)
C(5)	5335(2)	10856(1)	2145(1)	56(1)
C(6)	3912(2)	10238(1)	2171(1)	48(1)
C(7)	3647(2)	9389(1)	1666(1)	38(1)
C(8)	937(2)	8967(2)	2206(1)	60(1)
C(9)	2019(2)	7783(1)	1271(1)	38(1)
C(10)	601(2)	7773(1)	570(1)	38(1)
C(11)	-437(2)	6917(1)	425(1)	49(1)
C(12)	-1676(2)	6874(2)	-234(1)	60(1)
C(13)	-1902(2)	7688(2)	-748(1)	62(1)
C(14)	-903(3)	8547(2)	-602(1)	58(1)
C(15)	338(2)	8594(1)	54(1)	47(1)
C(16)	3752(2)	7425(1)	1011(1)	38(1)
C(17)	3463(2)	6447(1)	520(1)	47(1)
C(18)	2853(3)	5819(2)	-799(1)	73(1)
C(19)	2348(4)	6301(2)	-1579(1)	91(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-N(2)	1.2074(19)
O(2)-N(2)	1.210(2)
O(3)-C(17)	1.312(2)
O(3)-C(18)	1.462(2)
O(4)-C(17)	1.203(2)
N(1)-C(7)	1.3865(19)
N(1)-C(8)	1.447(2)
N(1)-C(9)	1.4604(19)
N(2)-C(16)	1.5405(19)
C(1)-C(2)	1.500(2)
C(1)-C(16)	1.516(2)
C(2)-C(3)	1.387(2)
C(2)-C(7)	1.404(2)
C(3)-C(4)	1.381(3)
C(4)-C(5)	1.373(3)
C(5)-C(6)	1.378(3)
C(6)-C(7)	1.405(2)
C(9)-C(10)	1.522(2)
C(9)-C(16)	1.543(2)
C(10)-C(15)	1.388(2)
C(10)-C(11)	1.388(2)
C(11)-C(12)	1.388(2)
C(12)-C(13)	1.376(3)
C(13)-C(14)	1.375(3)
C(14)-C(15)	1.384(2)
C(16)-C(17)	1.531(2)
C(18)-C(19)	1.475(4)
C(17)-O(3)-C(18)	117.81(15)
C(7)-N(1)-C(8)	120.66(13)
C(7)-N(1)-C(9)	123.48(12)
C(8)-N(1)-C(9)	114.09(13)
O(1)-N(2)-O(2)	123.89(15)
O(1)-N(2)-C(16)	119.95(14)
O(2)-N(2)-C(16)	116.14(14)
C(2)-C(1)-C(16)	110.04(12)

Table 3. Bond lengths [Å] and angles [°] for **5a**.

C(3)-C(2)-C(7)	119.71(14)
C(3)-C(2)-C(1)	121.17(14)
C(7)-C(2)-C(1)	119.12(13)
C(4)-C(3)-C(2)	121.64(16)
C(5)-C(4)-C(3)	118.61(16)
C(4)-C(5)-C(6)	121.44(16)
C(5)-C(6)-C(7)	120.48(16)
N(1)-C(7)-C(2)	120.31(13)
N(1)-C(7)-C(6)	121.56(14)
C(2)-C(7)-C(6)	118.11(14)
N(1)-C(9)-C(10)	112.25(12)
N(1)-C(9)-C(16)	111.33(12)
C(10)-C(9)-C(16)	110.65(11)
C(15)-C(10)-C(11)	118.52(14)
C(15)-C(10)-C(9)	121.60(13)
C(11)-C(10)-C(9)	119.86(13)
C(12)-C(11)-C(10)	120.65(16)
C(13)-C(12)-C(11)	120.12(17)
C(14)-C(13)-C(12)	119.73(16)
C(13)-C(14)-C(15)	120.43(17)
C(14)-C(15)-C(10)	120.53(16)
C(1)-C(16)-C(17)	114.64(12)
C(1)-C(16)-N(2)	107.97(12)
C(17)-C(16)-N(2)	103.73(12)
C(1)-C(16)-C(9)	111.44(12)
C(17)-C(16)-C(9)	109.50(12)
N(2)-C(16)-C(9)	109.18(11)
O(4)-C(17)-O(3)	126.13(16)
O(4)-C(17)-C(16)	122.95(15)
O(3)-C(17)-C(16)	110.88(13)
O(3)-C(18)-C(19)	106.51(18)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	70(1)	101(1)	44(1)	20(1)	-2(1)	6(1)
O(2)	54(1)	148(2)	81(1)	33(1)	4(1)	42(1)
O(3)	72(1)	45(1)	47(1)	-12(1)	2(1)	2(1)
O(4)	104(1)	35(1)	75(1)	4(1)	-1(1)	5(1)
N(1)	43(1)	48(1)	47(1)	-12(1)	12(1)	-3(1)
N(2)	50(1)	53(1)	47(1)	8(1)	-3(1)	7(1)
C(1)	42(1)	42(1)	37(1)	-2(1)	8(1)	0(1)
C(2)	41(1)	38(1)	37(1)	2(1)	1(1)	1(1)
C(3)	46(1)	50(1)	52(1)	3(1)	6(1)	-5(1)
C(4)	54(1)	48(1)	69(1)	-1(1)	-2(1)	-11(1)
C(5)	58(1)	44(1)	61(1)	-13(1)	-8(1)	0(1)
C(6)	49(1)	46(1)	46(1)	-9(1)	-3(1)	7(1)
C(7)	38(1)	37(1)	36(1)	1(1)	-2(1)	5(1)
C(8)	54(1)	67(1)	61(1)	-12(1)	22(1)	0(1)
C(9)	39(1)	37(1)	38(1)	2(1)	5(1)	-1(1)
C(10)	37(1)	38(1)	41(1)	1(1)	6(1)	2(1)
C(11)	45(1)	45(1)	57(1)	2(1)	5(1)	-5(1)
C(12)	47(1)	62(1)	69(1)	-12(1)	-1(1)	-8(1)
C(13)	51(1)	78(1)	54(1)	-12(1)	-8(1)	10(1)
C(14)	64(1)	59(1)	51(1)	6(1)	-3(1)	17(1)
C(15)	50(1)	40(1)	51(1)	4(1)	1(1)	5(1)
C(16)	41(1)	36(1)	37(1)	1(1)	0(1)	5(1)
C(17)	50(1)	38(1)	53(1)	-2(1)	0(1)	9(1)
C(18)	94(2)	53(1)	68(1)	-27(1)	-7(1)	7(1)
C(19)	114(2)	101(2)	56(1)	-27(1)	5(1)	-23(2)

Table 4. Anisotropic displacement parameters (Å2x 103) for **5a**. The anisotropicdisplacement factor exponent takes the form: -2 $\square h^2 a^{*2} U^{11} + ... + 2 h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)
H(1A)	5753	8041	481	49
H(1B)	3942	8464	117	49
H(3A)	7128	9670	807	59
H(4A)	7490	11084	1622	69
H(5A)	5482	11420	2480	67
H(6A)	3122	10384	2525	57
H(8A)	1125	9633	2435	89
H(8B)	1062	8463	2619	89
H(8C)	-207	8931	1925	89
H(9A)	1692	7292	1662	46
H(11A)	-301	6368	774	59
H(12A)	-2355	6294	-329	72
H(13A)	-2728	7657	-1191	75
H(14A)	-1062	9100	-947	70
H(15A)	1000	9181	149	57
H(18A)	1887	5445	-630	87
H(18B)	3806	5350	-828	87
H(19A)	1994	5784	-1965	136
H(19B)	3315	6668	-1738	136
H(19C)	1407	6763	-1540	136

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10 ³) for **5a**.

Table 6. Torsion angles [°] for **5a**.

C(16)-C(1)-C(2)-C(3)	146.62(14)
C(16)-C(1)-C(2)-C(7)	-32.65(18)
C(7)-C(2)-C(3)-C(4)	-1.1(2)
C(1)-C(2)-C(3)-C(4)	179.67(15)
C(2)-C(3)-C(4)-C(5)	1.3(3)
C(3)-C(4)-C(5)-C(6)	-0.4(3)
C(4)-C(5)-C(6)-C(7)	-0.7(3)
C(8)-N(1)-C(7)-C(2)	178.38(15)
C(9)-N(1)-C(7)-C(2)	14.5(2)
C(8)-N(1)-C(7)-C(6)	-3.3(2)
C(9)-N(1)-C(7)-C(6)	-167.20(14)
C(3)-C(2)-C(7)-N(1)	178.37(14)
C(1)-C(2)-C(7)-N(1)	-2.4(2)
C(3)-C(2)-C(7)-C(6)	0.0(2)
C(1)-C(2)-C(7)-C(6)	179.25(13)
C(5)-C(6)-C(7)-N(1)	-177.47(15)
C(5)-C(6)-C(7)-C(2)	0.9(2)
C(7)-N(1)-C(9)-C(10)	-114.38(15)
C(8)-N(1)-C(9)-C(10)	80.74(17)
C(7)-N(1)-C(9)-C(16)	10.28(19)
C(8)-N(1)-C(9)-C(16)	-154.59(14)
N(1)-C(9)-C(10)-C(15)	39.36(19)
C(16)-C(9)-C(10)-C(15)	-85.68(17)
N(1)-C(9)-C(10)-C(11)	-142.22(14)
C(16)-C(9)-C(10)-C(11)	92.74(16)
C(15)-C(10)-C(11)-C(12)	1.8(2)
C(9)-C(10)-C(11)-C(12)	-176.65(15)
C(10)-C(11)-C(12)-C(13)	-0.8(3)
C(11)-C(12)-C(13)-C(14)	-0.4(3)
C(12)-C(13)-C(14)-C(15)	0.5(3)
C(13)-C(14)-C(15)-C(10)	0.6(3)
C(11)-C(10)-C(15)-C(14)	-1.7(2)
C(9)-C(10)-C(15)-C(14)	176.74(15)
C(2)-C(1)-C(16)-C(17)	-179.03(12)
C(2)-C(1)-C(16)-N(2)	-64.00(15)
C(2)-C(1)-C(16)-C(9)	55.90(15)

O(1)-N(2)-C(16)-C(1)	132.59(17)
O(2)-N(2)-C(16)-C(1)	-49.1(2)
O(1)-N(2)-C(16)-C(17)	-105.38(18)
O(2)-N(2)-C(16)-C(17)	73.0(2)
O(1)-N(2)-C(16)-C(9)	11.3(2)
O(2)-N(2)-C(16)-C(9)	-170.38(17)
N(1)-C(9)-C(16)-C(1)	-45.24(16)
C(10)-C(9)-C(16)-C(1)	80.32(14)
N(1)-C(9)-C(16)-C(17)	-173.13(12)
C(10)-C(9)-C(16)-C(17)	-47.57(15)
N(1)-C(9)-C(16)-N(2)	73.94(15)
C(10)-C(9)-C(16)-N(2)	-160.50(12)
C(18)-O(3)-C(17)-O(4)	6.3(3)
C(18)-O(3)-C(17)-C(16)	-171.39(15)
C(1)-C(16)-C(17)-O(4)	156.34(17)
N(2)-C(16)-C(17)-O(4)	38.9(2)
C(9)-C(16)-C(17)-O(4)	-77.6(2)
C(1)-C(16)-C(17)-O(3)	-25.87(18)
N(2)-C(16)-C(17)-O(3)	-143.35(13)
C(9)-C(16)-C(17)-O(3)	100.21(15)
C(17)-O(3)-C(18)-C(19)	163.28(19)

Symmetry transformations used to generate equivalent atoms:

10. Spectral data and full characterization of spirohydantoin products.

2,4,4a,6-tetrahydro-1H-spiro[[1,4]oxazino[4,3-a]quinoline-5,4'-imidazolidine]-2',5'dione, 17a. Spirohydantoin 17a was synthesized *via* **Procedure B**. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.39 g, 1.41 mmol) from above and potassium cyanate (0.137 g, 1.69 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was then concentrated in vacuo, then re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated in vacuo to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (-.6 mL, 1.69 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids **17a-dia-1** (0.2 g, 52% yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.73 (s, 1 H) 8.04 - 8.11 (m, 1 H) 7.09 (t, *J*=7.4 Hz, 1 H) 6.97 (d, J=7.2 Hz, 1 H) 6.89 (d, J=8.0 Hz, 1 H) 6.69 (t, J=7.4 Hz, 1 H) 3.96 (d, J=9.0 Hz, 1 H) 3.78 - 3.92 (m, 2 H) 3.49 (td, J=11.7, 2.5 Hz, 1 H) 3.36 (br. s., 2 H) 3.14 - 3.25 (m, 2 H) 2.79 - 3.01 (m, 2 H) 2.83 (td, J=12.0, 3.0 Hz, 1 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 174.2, 156.1, 144.4, 129.0, 127.1, 119.7, 118.1, 112.4, 66.1, 65.8, 59.6, 58.9, 46.6, 35.5; HRMS (ES) MH⁺ calcd for C₁₄H₁₆N₃O₃ 274.1186, found 274.1195. **17a-dia-2** (0.13 g, 34 % yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.91 (s, 1 H) 8.32 (s, 1 H) 7.23 (s, 1 H) 7.06 - 7.18 (m, 1 H) 7.00 (d, J=7.4 Hz, 1 H) 6.93 (d, J=8.3 Hz, 1 H) 6.74 (t, J=7.3 Hz, 1 H) 3.95 (dd, J=11.4, 3.4 Hz, 1 H) 3.76 (d, J=11.0 Hz, 1 H) 3.65 (d, J=8.5 Hz, 1 H) 3.53 (td, J=11.7, 2.8 Hz, 1 H) 3.14 - 3.37 (m, 4 H) 2.67 - 2.82 (m, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 175.6, 156.4, 144.8, 129.6, 127.3, 119.6, 118.5, 112.7, 66.1, 65.8, 60.2, 56.5, 45.6, 37.0; HRMS (ES) MH⁺ calcd for C₁₄H₁₆N₃O₃ 274.1186, found 274.1189.

Ethyl 5-amino-8-bromo-1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylate, 16b. Diastereomers were separated using Atlantis T3 column (19 mm x100 mm 5μm) + Jupiter Proteo (21 mm x100 mm 4μm); mobile phase A: H₂O with 20 mM ammonium acetate pH 8, mobile phase B: CH₃CN, gradient 40-60% B in 20 min. **Diastereomer 1 (16b)**: ¹H NMR (400 MHz, Solvent) δ ppm 7.34 (dd, *J*=8.9, 2.1 Hz, 1 H) 7.27 (d, *J*=2.0 Hz, 1 H) 6.89 (d, *J*=9.0 Hz, 1 H) 4.39 (q, *J*=7.2 Hz, 2 H) 3.81 - 4.02 (m, 4 H) 3.45 - 3.67 (m, 3 H) 3.20 - 3.39 (m, 2 H) 1.36 (t, *J*=7.2 Hz, 3 H); ¹³C NMR (100 MHz, CD₃CO₂D) δ 167.4, 141.6, 132.5, 131.2, 120.8, 115.8, 111.2, 65.1, 64.1, 63.4, 58.5, 48.3, 31.0, 13.1; HRMS (ES) MH⁺ calcd for C₁₅H₂₁BrN₂O₃ 355.0613, found 355.0645.

8-Bromo-2,4,4a,6-tetrahydro-1H-spiro[[1,4]oxazino[4,3-a]quinoline-5,4'-imidazolidine]-2',5'-dione, 17b. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diasteromerically pure amine 16b (0.08 g, 0.23 mmol) from above and potassium cyanate (0.037 g, 0.45 mmol). The mixture was dissolved in acetic acid (5 mL) and the resulting solution was stirred overnight at rt. The reaction was concentrated in vacuo, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated, dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.08 mL, 0.21 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using chromatography (20-75% Water/ CH₃CN /TFA) to afford the pure spirohydantoin product **17b** (0.047 g, 76% yield) as white powdery solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.78 (br 2, 1H), 8.12 (s, 1 H) 7.22 (d, *J*=8.9 Hz, 1 H) 7.16 (s, 1 H) 6.85 (d, J=9.0 Hz, 1 H) 3.95 (d, J=7.0 Hz, 1 H) 3.76 - 3.92 (m, 2 H) 3.47 (td, J=11.7, 2.6 Hz, 1 H) 3.34 (br. s., 3 H) 3.14 - 3.26 (m, 2 H) 2.81 - 3.03 (m, 3 H) 2.06 - 2.13 (m, 1 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 174.0, 156.1, 143.7, 131.1, 129.5, 122.4, 114.4, 108.9, 66.0, 65.7, 59.2, 58.7, 46.5, 34.9; HRMS (ES) MH⁺ calcd for C₁₄H₁₅BrN₃O₃ 352.0291, found 352.0282.

Ethyl 5-amino-8-methoxy-1,2,4,4a,5,6-hexahydro-[1,4]oxazino[4,3-a]quinoline-5-carboxylate, 16c. Diastereomers were separated using Atlantis T3 column (19 mm x100 mm 5µm) + Jupiter Proteo (21 mm x100 mm 4µm); mobile phase A: H₂O with 20 mM ammonium formate pH 4, mobile phase B: CH₃CN, gradient 20-40% B in 20 min. **Diastereomer 1 (16c)**: ¹H NMR (400 MHz, CD₃CO₂D) δ ppm 6.95 (d, *J*=9.3 Hz, 1 H) 6.86 (dd, *J*=9.0, 2.8 Hz, 1 H) 6.71 (d, *J*=2.5 Hz, 1 H) 4.44 (q, *J*=7.0 Hz, 2 H) 4.10 (dd, *J*=11.3, 2.8 Hz, 1 H) 3.64 - 3.87 (m, 8 H) 3.49 (dd, *J*=11.0, 3.8 Hz, 1 H) 3.32 (d, *J*=17.6 Hz, 1 H) 2.85 - 3.06 (m, 1 H) 1.39 (t, *J*=7.2 Hz, 3 H); ¹³C NMR (100 MHz, CD₃CO₂D) δ 168.1, 165.6, 153.9, 137.9, 118.7, 114.8, 114.4, 66.2, 64.8, 63.8, 58.4, 56.3, 54.9, 46.3, 35.5, 13.1; HRMS (ES) MH⁺ calcd for C₁₆H₂₃BrN₂O₄ 307.1613, found 307.1644.

8-Methoxy-2,4,4a,6-tetrahydro-1H-spiro[[1,4]oxazino[4,3-a]quinoline-5,4'-

imidazolidine]-2',5'-dione, 17c. To a 25 mL round bottom flask equipped with magnetic stirrer were added **16c** (0.09 g, 0.29 mmol) from above and potassium cyanate (0.048 g, 0.59 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was concentrated *in vacuo*, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO4, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.10 mL, 0.29 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When

the reaction was complete, solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography (20-75% Water/ CH₃CN /TFA) to afford the pure spirohydantoin product **17b** (0.073 g, 84% yield) as white powdery solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.9 (br, s) 8.29 (s, 1 H) 6.87 (d, *J*=9.3 Hz, 1 H) 6.72 (dd, *J*=9.0, 3.0 Hz, 1 H) 6.64 (d, *J*=3.0 Hz, 1 H) 3.93 (dd, *J*=11.4, 3.4 Hz, 1 H) 3.55 - 3.72 (m, 4 H) 3.54 (td, *J*=9.0, 3.0 Hz, 1 H) 6.64 (d, *J*=3.0 Hz, 1 H) 3.09 (dd, *J*=10.4, 3.1 Hz, 1 H) 2.64 - 2.77 (m, 2 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 175.6, 156.4, 152.2, 138.9, 120.9, 114.7, 113.9, 112.9, 66.1, 65.7, 60.5, 57.0, 55.2, 46.6, 37.2; HRMS (ES) MH⁺ calcd for C₁₅H₁₈N₃O₄ 304.1292, found 304.1303.

Ethyl 3-amino-1-ethyl-2-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate, 16d. The major diastereomers was isolated using SFC with DEAP (4.6 mm x250 mm 5μm); mobile phase A: CO₂, mobile phase B: EtOH. **Diastereomer 1 (16d)**: ¹H NMR (400 MHz, CDCl₃) δ ppm 6.97 - 7.15 (m, 2 H) 6.64 (t, *J*=7.1 Hz, 1 H) 6.59 (d, *J*=7.9 Hz, 1 H) 4.03 - 4.21 (m, 2 H) 3.59 - 3.77 (m, 1 H) 3.33 - 3.50 (m, 1 H) 3.16 - 3.29 (m, 2 H) 2.75 (d, *J*=16.1 Hz, 1 H) 1.09 - 1.22 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 175.3, 142.6, 129.1, 127.1, 119.9, 116.2, 111.0, 60.9, 58.3, 43.8, 34.3, 14.0, 13.0, 12.8; HRMS (ES) MH⁺ calcd for C₁₅H₂₃N₂O₂ 263.1715, found 263.1722.

1'-Ethyl-2'-methyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione, 17d. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diasteromerically pure amine **16d** (0.21 g, 0.80 mmol) from above and potassium cyanate (0.13 g, 1.6 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was

stirred overnight at rt. The reaction was concentrated in vacuo, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated in vacuo to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.35 mL, 0.94 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, the solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using chromatography to afford the pure spirohydantoin product **17d** (0.179 g, 88% yield) as white powdery solid. ¹H NMR (400 MHz, DMSO- d_6) δ ppm 10.66 (s, 1 H) 8.04 (s, 1 H) 7.02 (t, J=7.7 Hz, 1 H) 6.93 (d, J=7.1 Hz, 1 H) 6.65 (d, J=8.0 Hz, 1 H) 6.53 (t, J=7.0 Hz, 1 H) 3.41 - 3.52 (m, 2 H) 3.15 - 3.31 (m, 1 H) 2.92 - 3.02 (d, J=20 Hz, 1 H) 2.78 – 2.83 (d, J=20 Hz, 1 H) 2.48 - 2.57 (m, 1 H) 1.00 - 1.13 (m, 5 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.9, 141.4, 130.2, 128.2, 116.9, 116.0, 116.6, 61.9, 59.1, 44.6, 32.1, 14.3, 13.5; HRMS (ES) MH⁺ calcd for C₁₄H₁₈N₃O₂ 260.1354, found 260.1370.

1'-Methyl-2'-vinyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione, 17e. Spirohydantoin **17e** was synthesized *via* **Procedure B**. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine from above and potassium cyanate (1.2 equiv). The mixture was dissolved in acetic acid and the resulting solution was stirred overnight at rt. The reaction was concentrated *in vacuo*, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. 17e-dia-1 (0.2 g, 52% yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.68 (s, 1 H) 8.09 (s, 1 H) 7.08 (t, *J*=7.4 Hz, 1 H) 6.95 (d, J=7.1 Hz, 1 H) 6.68 (d, J=8.0 Hz, 1 H) 6.61 (t, J=7.0 Hz, 1 H) 5.67 (ddd, J=17.2, 10.2, 8.3 Hz, 1 H) 5.33 (dd, J=12.0, 4.0 Hz, 1 H) 5.22 (d, J=16.0 Hz, 1 H) 3.87 (d, J=8.0 Hz, 1 H) 3.06 (d, J=16.1 Hz, 1 H) 2.82 (s, 3H) 2.74 - 2.78 (d, J=16.1 Hz, 1 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 175.6, 156.5, 144.8, 134.4, 128.9, 127.4, 120.4, 118.5, 116.4, 111.6, 65.1, 61.9, 36.2, 34.9; HRMS (ES) MH⁺ calcd for C₁₄H₁₆N₃O₂ 258.1198, found 258.1201. **17e-dia-2** (0.13 g, 34 % yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.76 (s, 1 H) 8.08 - 8.15 (m, 1 H) 7.08 (t, J=7.3 Hz, 1 H) 6.95 (d, J=7.3 Hz, 1 H) 6.57 - 6.65 (m, 2 H) 5.82 (ddd, J=16.9, 10.5, 5.9 Hz, 1 H) 5.11 (dt, J=10.3, 1.5 Hz, 1 H) 4.92 (dt, J=17.2, 1.6 Hz, 1 H) 3.88 (dd, J=5.9, 1.4 Hz, 1 H) 3.10 (d, J=16.3 Hz, 1 H) 2.91 (s, 3 H) 2.59 - 2.74 (d, J=16.3 Hz, 1 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 175.3, 156.1, 143.6, 132.9, 129.0, 127.5, 116.9, 116.0, 116.0, 110.6, 66.7, 60.7, 37.8, 32.6; HRMS (ES) MH⁺ calcd for C₁₄H₁₆N₃O₂ 258.1198, found 258.1199.

1'-Methyl-2'-phenyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione,

17f. Spirohydantoin **17f** was synthesized *via* **Procedure B**. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.4 g, 1.29 mmol) and potassium cyanate (0.125 g, 1.55 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was then concentrated *in vacuo*, then re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH (10 mL), and NaOEt in EtOH (0.6 mL, 1.55 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored

by UPLC-MS). When the reaction was complete, the solution was concentrated *in vacuo*, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. **17f-dia-1** (0.245 g, 62% yield, product identical to spirohydantoin **15**); **17f-dia-2** (0.144 g, 36 % yield): ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 10.33 (br. s., 1 H) 8.20 (s, 1 H) 7.25 - 7.36 (m, 5 H) 7.12 (t, *J*=7.3 Hz, 1 H) 7.01 (d, *J*=7.3 Hz, 1 H) 6.80 (d, *J*=8.0 Hz, 1 H) 6.66 (t, *J*=7.0 Hz, 1 H) 4.56 (s, 1 H) 3.27 - 3.31 (d, *J*=15.8 Hz, 1 H) 2.80 (d, *J*=15.8 Hz, 1 H) 2.63 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 174.4, 154.9, 144.9, 135.7, 127.8, 127.7, 126.8, 126.5, 117.8, 115.6, 111.8, 65.6, 61.7, 36.6, 34.9; HRMS (ES) MH⁺ calcd for C₁₈H₁₈N₃O₂ 308.1394, found 308.1381.

Ethyl 3-amino-2-(4-bromophenyl)-1-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate, 16g. The major diastereomer was isolated using SFC with Viridis Silica (4.6 mm x 150 mm 5µm); mobile phase A: CO₂, mobile phase B: EtOH, gradient 10-30% B in 5 min. **Diastereomer 1 (16g)**: ¹H NMR (400 MHz, CDCl₃) δ ppm 7.27 - 7.47 (d, *J*=8.0 Hz, 2 H) 7.15 - 7.24 (m, 1 H) 7.00 (d, *J*=8.0 Hz, 2 H) 6.82 - 6.99 (m, 1 H) 6.50 - 6.72 (m, 2 H) 4.58 (s, 1 H) 4.02 (q, *J*=7.0 Hz, 3 H) 3.20 (d, *J*=15.6 Hz, 1 H) 2.73 (s, 3 H) 2.61 (d, *J*=15.6 Hz, 1 H) 1.05 (t, *J*=8.0 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 143.3, 138.0, 131.6, 130.3, 128.8, 128.5, 122.2, 117.3, 116.9, 110.1, 70.2, 62.0, 58.9, 37.7, 30.8, 13.7; HRMS (ES) MH⁺ calcd for C₁₉H₂₂BrN₂O₂ 389.0820, found 389.0991.

2'-(4-Bromophenyl)-1'-methyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione, 17g. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diasteromerically pure amine 16g (0.04 g, 0.10 mmol) from above and potassium cyanate (0.017 g, 0.21 mmol). The mixture was dissolved in acetic acid (5 mL) and the resulting solution was stirred overnight at rt. The reaction was concentrated in vacuo, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated in vacuo to afford the crude urea derivative. This material was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.35 mL, 0.94 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using chromatography to afford the pure spirohydantoin product 17g (0.03 g, 78% yield) as a white powdery solid. ¹H NMR (400 MHz, DMSO- d_6) δ ppm 10.42 (s, 1 H) 8.21 (s, 1 H) 7.55 (d, J=7.8 Hz, 2 H) 7.22 (d, J=7.8 Hz, 2 H) 7.13 (t, J=7.3 Hz, 1 H) 7.01 (d, J=7.0 Hz, 1 H) 6.80 (d, J=8.0 Hz, 1 H) 6.67 (t, J=7.1 Hz, 1 H) 4.58 (s, 1 H) 3.24 (d, J=15.8 Hz, 1 H) 2.80 (d, J=15.8 Hz, 1 H) 2.63 (s, 3 H); ¹³C NMR (100 MHz, DMSO d_6) δ 175.3, 156.0, 145.9, 136.4, 130.9, 128.9, 127.6, 121.3, 118.9, 117.0, 112.9, 66.1, 62.6, 54.8, 37.8, 35.6; HRMS (ES) MH⁺ calcd for C₁₈H₁₇BrN₃O₂ 386.0499, found 386.0511.

2'-(4-Fluorophenyl)-1'-methyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5dione, 17h. Spirohydantoin **17h** was synthesized *via* **Procedure B**. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.449 g, 1.37 mmol) from above and potassium cyanate (0.133 g, 1.64 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was then concentrated *in vacuo*, then re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated *in vacuo* to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH (10 mL), and NaOEt in EtOH (0.6 mL, 1.64 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, solution was concentrated *in* vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. **17h-dia-1** (0.245 g, 61% yield): ¹H NMR (500 MHz, DMSO-d₆) δ ppm 10.62 (br. s., 1 H) 8.23 (s, 1 H) 7.00 - 7.16 (m, 6 H) 6.69 (d, J=8.1 Hz, 1 H) 6.65 (t, J=7.3 Hz, 1 H) 4.49 (s, 1 H) 3.34 (s, 5 H) 3.03 (d, J=16.4 Hz, 1 H) 2.77 (s, 3H) 2.72 - 2.83 (d, *J*=16.4 Hz, 1 H); ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -73.4; ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 160.6 (d, *J*_{cf}=241.3 Hz), 156.1, 144.6, 134.4, 129.8, 129.0, 127.7, 117.3, 116.2, 114.6 (d, J_{cf}=21.3 Hz), 110.7, 67.8, 61.3, 37.6, 32.5; HRMS (ES) MH⁺ calcd for C₁₇H₁₈FN₃O₂ 326.1299, found 326.1293. **17h-dia-2** (0.145 g, 33 % yield):¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 10.5 (br s, 1H), 8.36 (s, 1 H) 7.43 (t, *J*=6.5 Hz, 2 H) 7.24 - 7.34 (m, 3 H) 7.14 (d, J=7.3 Hz, 1 H) 6.94 (d, J=8.2 Hz, 1 H) 6.80 (t, J=7.2 Hz, 1 H) 4.72 (s, 1 H) 3.40 (d, J=15.8 Hz, 1 H) 2.93 (d, J=15.8 Hz, 1 H) 2.75 (s, 3 H) ; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -73.4; ¹³C NMR (125 MHz, CDCl₃) δ 175.4, 162.8 (d, *J_{cf}*=242.5 Hz), 156.1, 145.9, 133.0, 130.7, 128.9, 127.6, 118.9, 116.9, 114.9 (d, *J_{cf}*=21.3 Hz), 112.9, 65.9, 62.7, 37.6, 35.8; HRMS (ES) MH⁺ calcd for C₁₇H₁₈FN₃O₂ 326.1299, found 326.1300.

2'-(3-Methoxyphenyl)-1'-methyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-quinoline]-2,5-dione, 17i. Spirohydantoin **17i** was synthesized *via* **Procedure B**. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.33 g, 0.97 mmol) and potassium cyanate (0.157 g, 1.94 mmol). The mixture was dissolved in acetic acid (5 mL) and the resulting solution was stirred overnight at rt. The reaction was then heated to 90 °C for 24 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, the solution was cooled to rt, diluted with water and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. **17i-dia-1** (0.209 g, 64% yield): ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 10.78 (s, 1 H) 8.40 (s, 1 H) 7.28 - 7.43 (m, 2 H) 7.21 (d, *J*=7.3 Hz, 1 H) 7.03 (d, *J*=8.1 Hz, 1 H) 6.78 - 6.92 (m, 4 H) 4.60 (s, 1 H) 3.86 (s, 3 H) 3.27 (d, J=16.4 Hz, 1 H) 3.00 (d, J=16.4 Hz, 1 H) 2.96 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 175.5, 158.9, 156.1, 146.1, 138.4, 128.9, 127.6, 121.1, 118.9, 116.9, 114.4, 113.6, 112.8, 66.6, 62.8, 55.0, 37.6, 36.1; HRMS (ES) MH⁺ calcd for C₁₉H₂₀N₃O₃ 338.1499, found 338.1488. **17i-dia-2** (0.087 g, 26 % yield): ¹H NMR (400 MHz, DMSO- d_6) δ ppm 10.59 (br. s., 1 H) 8.19 (s, 1 H) 7.07 - 7.23 (m, 2 H) 7.02 (d, J=7.0 Hz, 1 H) 6.77 - 6.91 (m, 1 H) 6.58 - 6.73 (m, 4 H) 4.40 (s, 1 H) 3.66 (s, 3 H) 3.08 (d, J=16.3 Hz, 1 H) 2.81 (d, J=16.3 Hz, 1 H) 2.77 (s, 3 H); ¹³C NMR (100 MHz, DMSO- d_6) δ 174.2, 158.6, 156.0, 144.8, 139.7, 128.9, 128.8, 127.6, 120.1, 117.6, 116.2, 114.4, 112.5, 110.7, 68.6, 61.5, 54.8, 37.7, 32.9; HRMS (ES) MH⁺ calcd for C₁₉H₂₀N₃O₃ 338.1499, found 338.1504.

2'-(3,4-Dimethoxyphenyl)-1'-methyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-

quinoline]-2,5-dione, 17j. Spirohydantoin 17j was synthesized via Procedure B. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.46g, 1.24 mmol) from above and potassium cyanate (0.201 g, 2.48 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was then concentrated in vacuo, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO₄, filtered, and concentrated in vacuo to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.6 mL, 1.45 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, the solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated in vacuo. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. **17j-dia-1** (0.165 g, 37% yield¹H NMR (500 MHz, DMSO-*d*₆) δ 10.30 (s, 1 H) 8.25 (s, 1 H) 7.13 (t, *J*=7.8 Hz, 1 H) 7.01 (d, *J*=7.7 Hz, 1 H) 6.99 (d, J=8.1 Hz, 1 H) 6.89 (d, J=8.5 Hz, 1 H) 6.81 (d, J=8.2 Hz, 1 H) 6.75 (d, J=8.1 Hz,

1 H) 6.68 (t, J=7.2 Hz, 1 H) 4.48 (s, 1 H) 3.75 (s, 3 H) 3.71 (s, 3 H) 3.28 (d, J=15.8 Hz, 1 H) 2.78 (d, J=15.8 Hz, 1 H) 2.64 (s, 3 H); ¹³C NMR (125 MHz, DMSO- d_6) δ 175.6, 158.9, 156.3, 148.5, 148.2, 146.1, 128.9, 128.8, 127.6, 121.1, 118.9, 116.8, 112.9, 112.0, 110.7, 66.2, 62.9, 55.6, 55.3, 37.3, 36.2; HRMS (ES) MH⁺ calcd for C₂₀H₂₂N₃O₄ 368.1605, found 368.1613. **17j-dia-2** (0.220 g, 50 % yield): ¹H NMR (500 MHz, DMSO- d_6) δ 10.52 (s, 1 H) 8.14 (s, 1 H) 7.13 (t, J=7.9 Hz, 1 H) 7.00 (d, J=7.3 Hz, 1 H) 6.83 (d, J=8.2 Hz, 1 H) 6.57 - 6.75 (m, 4 H) 4.34 (s, 1 H) 3.72 (s, 3H), 3.60 (s, 3H), 3.06 (d, J=16.4 Hz, 1 H) 2.69 - 2.85 (d, J=16.4 Hz, 1 H) 2.76 (s, 3 H); ¹³C NMR (125 MHz, DMSO- d_6) δ 174.4, 156.1, 148.2, 147.7, 145.0, 130.3, 128.8, 127.6, 119.9, 117.8, 116.2, 112.3, 111.0, 110.9, 68.2, 61.7, 55.3 (2 C), 37.7, 33.2; HRMS (ES) MH⁺ calcd for C₂₀H₂₂N₃O₄ 368.1605, found 368.120, found 368.

1'-methyl-2'-phenyl-2',4'-dihydro-1'H-spiro[imidazolidine-4,3'-[1,8]naphthyridine]-2,5dione, 17k. Spirohydantoin 17k was synthesized via Procedure B. To a 25 mL round bottom flask equipped with magnetic stirrer were added the diastereomeric mixture of amine (0.46g, 1.24 mmol) from above and potassium cyanate (0.201 g, 2.48 mmol). The mixture was dissolved in acetic acid (10 mL) and the resulting solution was stirred overnight at rt. The reaction was then concentrated in vacuo, re-dissolved in EtOAc and washed with water and brine. The organic layer was separated and dried over MgSO4, filtered, and concentrated in vacuo to afford the crude urea derivative. This material (diastereomeric mixture of urea derivatives) was then transferred to a 25 mL round bottom flask, dissolved in EtOH, and NaOEt in EtOH (0.6 mL, 1.45 mmol) was added. The resulting brown solution was stirred at rt for about 30 min to 1 h until all the urea has been converted to the spirohydantoin derivative (as monitored by UPLC-MS). When the reaction was complete, the solution was concentrated in vacuo, quenched with saturated aqueous NH₄Cl solution and then extracted with EtOAc 3x. The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated *in vacuo*. The crude residue was purified using chromatography to afford the two spirohydantoin diastereomers as white powdery solids. **17k-dia-1** (0.165 g, 37% yield): ¹H NMR (500 MHz, DMSO-*d*₆) δ ppm 10.62 (br. s., 1 H) 8.36 (s, 1 H) 8.04 (dd, *J*=5.0, 1.6 Hz, 1 H) 7.25 - 7.34 (m, 4 H) 7.02 - 7.08 (m, 2 H) 6.61 (dd, *J*=7.1, 4.9 Hz, 1 H) 4.60 (s, 1 H) 3.34 (s, 6 H) 3.06 (d, *J*=16.4 Hz, 1 H) 2.91 (s, 3 H) 2.82 (d, *J*=16.1 Hz, 1 H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 174.0, 156.0, 154.9, 146.1, 137.5, 136.1, 127.9, 127.6, 112.9, 112.2, 68.3, 60.9, 35.4, 32.4; HRMS (ES) MH⁺ calcd for C₁₇H₁₇N₄O₂ 309.1346, found 309.1354. **17k-dia-2** (0.220 g, 50 % yield): ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.43 (br. s., 1 H) 8.24 (s, 1 H) 8.04 (dd, *J*=4.7, 1.3 Hz, 1 H) 7.30 - 7.39 (m, 4 H) 7.25 (d, *J*=6.6 Hz, 2 H) 6.63 (dd, *J*=7.3, 5.0 Hz, 1 H) 4.75 (s, 1 H) 3.25 (d, *J*=15.8 Hz, 1 H) 2.85 (d, *J*=15.8 Hz, 1 H) 2.79 (s, 3 H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 175.4, 155.9, 146.0, 136.2, 128.8, 128.1, 127.9, 113.9, 112.6, 66.2, 61.7, 34.9, 29.9; HRMS (ES) MH⁺ calcd for C₁₇H₁₇N₄O₂ 309.1346, found 309.1359.

Ethyl 1,2,2-trimethyl-3-nitro-1,2,3,4-tetrahydroquinoline-3-carboxylate, 8. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.09 (t, *J*=8.0 Hz, 1 H) 7.00 (d, *J*=8.0 Hz, 1 H) 6.68 (t, *J*=8.0 Hz, 1 H) 6.63 (d, *J*=8.0 Hz, 1 H) 4.13 - 4.26 (m, 2 H) 3.70 (d, *J*=17.6 Hz, 1 H) 3.43 (d, *J*=17.6 Hz, 1 H) 2.80 (s, 3 H) 1.59 (s, 3 H) 1.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 144.6, 128.3, 127.7, 118.5, 117.7, 113.4, 95.5, 62.6, 59.3, 34.5, 31.1, 23.2, 22.6, 13.8; HRMS (ES) MH⁺ calcd for C₁₅H₂₀N₂O 292.1423, not determined due to instability.

1-methyl-3-nitro-3,4-dihydroquinolin-2(1H)-one, 25. This material was formed from the decomposition. of tetrahydroquinoline-nitroester **8** after standing at rt overnight. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.37 (t, *J*=7.8 Hz, 1 H) 7.22 - 7.29 (m, 1 H) 7.13 (t, *J*=7.6 Hz, 1 H) 7.09 (d, *J*=8.2 Hz, 1 H) 5.37 (dd, *J*=9.8, 5.5 Hz, 1 H) 3.80 (dd, *J*=15.7, 9.9 Hz, 1 H) 3.48 (s, 3H) 3.39 - 3.44 (dd, *J*=12.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 138.8, 128.9, 128.7, 124.2, 120.4, 115.4, 83.6, 30.9, 30.5; HRMS (ES) MH⁺ calcd for C₁₀H₁₀N₂O₃ 206.0691, did not ionize either by ES+ or ES-.

11. ¹H NMR and ¹³C NMR spectra of spirohydantoin products.

9/2/2015 3:06:38 PM

9/2/2015 3:42:32 PM

S37

9/2/2015 4:00:34 PM

9/2/2015	4.06:21	PM
01212010	1.00.21	

OriginalDateForRelativeTime 2015-08-12T13:10:24				Multiplets Integrals	Sum 0.00	Number of Nuclei	i 0 H's
Acquisition Time (sec)	3.1719	Comment	PROTON CDCI3	{C:\Bruker\TOPSPIN1.3}	fbriones 48	Date	12 Aug 2015 13:10:24
Date Stamp	12 Aug 2015 13:"	10:24		File Name	C:\Users\kmwk4	59\Desktop\OL-NMR\4-H	Npdata\1\1r
Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	16	Origin	spect
Original Points Count	32768	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	362.00	SW(cyclical) (Hz)	10330.58	Solvent	CHLOROFORM-	d	
Spectrum Offset (Hz)	3088.5571	Spectrum Type	STANDARD	Sweep Width (Hz)	10330.26	Temperature (degree	C) 27.160

9/4/2015 4:44:51 PM

9/2/2015 4:26:29 PM

OriginalDateForRelativeTime 2014-10-20T09:54:08				Multiplets Integrals	Sum 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_QNP_32	CDCl3 {C:\u} fbriones 11		Date	20 Oct 2014 09:54:08
Date Stamp	20 Oct 2014 09:5	54:08		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\crud	le-entry3-t1\1\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	32	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	8223.68	Solvent	CHLOROFORM-	d	
Spectrum Offset (Hz)	2471.0088	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree (26.960
Spectrum Offset (Hz)	2471.0088	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree 0	26.960

9/2	/201	15	4.32	14	PM
072	2201		4.02		1.144

OriginalDateForRelativeTime 2014-12-05T15:45:52				Multiplets Integrals	Sum 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_QNP_32	CDCI3 (C:\u) fbriones 21		Date	05 Dec 2014 15:45:52
Date Stamp	05 Dec 2014 15:4	45:52		File Name	C:\Users\kmwk4	59\Desktop\OL-NMR\cruc	de-entry5-t1\1\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	32	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	8223.68	Solvent	CHLOROFORM-	d	
Spectrum Offset (Hz)	2471.0088	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree	C) 27.060

rude-entry5-t1.001.001.1r.

9/2/2015 4:39:04 PM

3.08

OriginalDateForRelative	eTime 2014-04-03	T13:33:52		Multiplets Integrals	Sum 0.00	Number of Nucl	el 0 H's
Acquisition Time (sec)	0.9961	Comment	proton_QNP_32	CDCI3 (C:\u) fbriones 3		Date	03 Apr 2014 13:33:52
ate Stamp	03 Apr 2014 13:	33:52		File Name	C:\Users\kmwk4	59\Desktop\OL-NMR\5a-	H-pure\1\pdata\1\1r
requency (MHz)	400.13	Nucleus	1H	Number of Transients	32	Origin	spect
riginal Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
eceiver Gain	161.30	SW(cyclical) (Hz)	8223.68	Solvent	CHLOROFORM	-d	
pectrum Offset (Hz)	2471.0088	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree	C) 27.060
0.00 5a 400 M	NO ₂ CO	₂ Et				2.96	
.6							1 18
.5							
4							
3		33					1.17
2		1000	7.23	104	4.12	82 8	
1.1		7.34	7.09	10.10	4.14 4.14 4.14 4.14 4.09 3.73		ſ

0

9/2/2015 4:56:34 PM

0/0/0015	5.04.20	DM
9/2/2015	5:04:29	PM

OriginalDateForRelativ	eTime 2014-04-2	8T14:59:12		Multiplets Integr	als Sum 18.	55 Number of N	uclei 17 H's	
Acquisition Time (sec)	0.9961	Comment	proton_QNP_12	8 DMSO {C:\u} fbriones 3		Date	28 Apr 2014 14:59:12	
Date Stamp	28 Apr 2014 14	:59:12		File Name	C:\Users\kmwk4	459\Desktop\OL-NMR\15-	H\1\pdata\1\1r	
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	128	Origin	spect	
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30	
Receiver Gain	128.00	SW(cyclical) (Hz)	8223.68	Solvent	DMSO-d6	Spectrum Offset (Hz)	2471.0088	
Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree C	27.060			
15-H.001.001.1r.es	p Vertica	IScaleFactor = 1						

9/3/2015	12:03:55	PM

OriginalDateForRelativeTime 2014-04-28T14:35:44				Multiplets Integrals S	um 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_longdelay	_QNP_16 Acetic {C:\u} fbr	iones 30	Date	28 Apr 2014 14:35:44
Date Stamp	28 Apr 2014 14:3	5:44		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Table	e 3\amines\17b-amine-H\2\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	32.00	SW(cyclical) (Hz)	8223.68	Solvent	Acetic	Spectrum Offset (Hz)	2471.0088
Spectrum Type	STANDARD	Sween Width (Hz)	8223 43	Temperature (degree C	1 26 960		

9/3/2015	12:06:02	PM
5/5/2015	12.00.02	1.141

9/3/2015 12:09:17 PM	9/3/2015	12:09:17	PM
----------------------	----------	----------	----

9/3/2015 12:13:18 PM

OriginalDateForRelativeTime 2014-06-16T10:36:48				Multiplets Integrals Se	um 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_QNP_128	CDCI3 {C:\u} fbriones 36		Date	16 Jun 2014 10:36:48
Date Stamp	16 Jun 2014 10:3	6:48		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Table	3\amines\17g-amine-H\1\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	128	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	161.30	SW(cyclical) (Hz)	8223.68	Solvent	CHLOROFORM-C	1	
Spectrum Offset (Hz)	2433.1646	Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree (26.960

9/3/2015 1:03:01 PM

OriginalDateForRelative	Time 2014-04-30	T17:02:56		Multiplets Integrals	Sum 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_QNP_128	DMSO {C:\u} fbriones 43	Ø	Date	30 Apr 2014 17:02:56
Date Stamp	30 Apr 2014 17:0	2:56		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Table	3\17a-d1-H\1\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	128	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	8223.68	Solvent	DMSO-d6	Spectrum Offset (Hz)	2471.0088
Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree C)	26.960		
0.9 0.8 0.7 0.7	NH NH NH NH NH N NH N N NH N N NH NH NH						- 255

9/3/2015 1:07:48 PM

9/3/2015	1:20:08	PM

9/3/2015 1:27:40 PM

OriginalDateForRelativ	eTime 2015-02-20	T09:53:52		Multiplets Integrals	Sum 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_longdelay	_QNP_16 DMSO {C:\u} ft	priones 1	Date	20 Feb 2015 09:53:52
Date Stamp	20 Feb 2015 09:5	53:52		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Tabl	e 3\17e-d1\2\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	181.00	SW(cyclical) (Hz)	8223.68	Solvent	DMSO-d6	Spectrum Offset (Hz)	2471.0088
Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree C) 26.960		
176-d1.002.001.1r		ScaleFactor = 1					2.82

ò	n	20	16	1-46-	1.1	DM
ų	10	20	10	1.40.		L. 16

OriginalDateForRelativeTime 2015-02-23T15:56:32				Multiplets Integrals	Sum 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	0.9961	Comment	proton_longdelay	QNP_16 DMSO {C:\u} fb	riones 20	Date	23 Feb 2015 15:56:32
Date Stamp	23 Feb 2015 15:	56:32		File Name	C:\Users\kmwk45	59\Desktop\OL-NMR\Tabl	e 3\17e-d2\5\pdata\1\1r
Frequency (MHz)	400.13	Nucleus	1H	Number of Transients	16	Origin	spect
Original Points Count	8192	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	161.30	SW(cyclical) (Hz)	8223.68	Solvent	DMSO-d6	Spectrum Offset (Hz)	2471.0088
Spectrum Type	STANDARD	Sweep Width (Hz)	8223.43	Temperature (degree C	26.960		
2							-

9/3/2015 1:57:52 PM

nginaiDateronkeiativ	eTime 2015-08-31	T12:19:12		Number of Nucl	lel 0 F's	1	
cquisition Time (sec)	0.6554	Comment	F19CPD DMSO (C	NBruker/TOPSPIN1.3} fb	riones 50	Date	31 Aug 2015 12:19:12
te Stamp	31 Aug 2015 12:1	19:12		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Table	3\EN07630-21-MAJ\2\pdata\1\1r
equency (MHz)	470.59	Nucleus	19F	Number of Transients	8	Origin	spect
iginal Points Count	65536	Owner	usbodiab	Points Count	65536	Pulse Sequence	zgfhiggn
ceiver Gain	4096.00	SW(cyclical) (Hz)	100000.00	Solvent	DMSO-d6	Spectrum Offset (Hz)	0.0164
ectrum Type	STANDARD	Sweep Width (Hz)	99998.48	Temperature (degree C	27.160		
7 4 4 7 4 7 4 7 4 7 4 7 4 7 6 7 7 6 7 7 7 7	O NH NH H J J J J J J J J J J J J J J J J						1972-
1				the second s			

9/3/2015 2:11:48 PM

9/3/2015 2:19:36 PM

OriginalDateForRelativ	eTime 2015-08-24	T11:06:40		Multiplets Integrals S	<i>um</i> 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	3.1719	Comment	PROTON DMSO	{C:\Bruker\TOPSPIN1.3}1	fbriones 58	Date	24 Aug 2015 11:06:40
Date Stamp	24 Aug 2015 11:0	6:40		File Name	C:\Users\kmwk45	9\Desktop\OL-NMR\Table	e 3\17i-d1-H\1\pdata\1\1r
Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	64	Origin	spect
Original Points Count	32768	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	143.70	SW(cyclical) (Hz)	10330.58	Solvent	DMSO-d6	Spectrum Offset (Hz)	3188.8694
Spectrum Type	STANDARD	Sweep Width (Hz)	10330.26	Temperature (degree C	27.160		

9/3/2015	2:21:49 F	M

9/3/2015 2:32:31 PM

9/3/2015	2:25:42	ΡN

OriginalDateForRelativeTime 2015-08-25T11:23:44				Multiplets Integrals Su	Im 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	3.1719	Comment	PROTON DMSO	C:\Bruker\TOPSPIN1.3} f	briones 35	Date	25 Aug 2015 11:23:44
Date Stamp 25 Aug 2015 11:23:44			File Name C:\Users\kmwk459\Desktop\OL-NMR\Table 3\EN07375-76-B-17j-d1\1\pdata\1\1r				
Frequency (MHz)	500.13	Nucleus	1H	Number of Transients	64	Origin	spect
Original Points Count	32768	Owner	usbodlab	Points Count	32768	Pulse Sequence	zg30
Receiver Gain	90.50	SW(cyclical) (Hz)	10330.58	Solvent	DMSO-d6	Spectrum Offset (Hz)	3088.5571
Spectrum Type	STANDARD	Sweep Width (Hz)	10330.26	Temperature (degree C	27.160		

9/3/2015 4:38:09 PM

9/2/2015 5:11:09 PM

9/2/2015	5.13.24	PM

OriginalDateForRelativeTime 2015-07-17T14:18:40				Multiplets Integrals S	um 0.00	Number of Nuclei	0 H's
Acquisition Time (sec)	2.6542 Comment A3 300MHz proton_longdelay_QNP_16 MeOD {C:u} fbriones 10						
Date	17 Jul 2015 14:18	:40		Date Stamp	17 Jul 2015 14:18:40		
File Name	C:\Users\kmwk459\Desktop\OL-NMR\22-epi-c3\1\pdata\1\1r			Frequency (MHz)	300.13	Nucleus	1H
Number of Transients	16	Origin	spect	Original Points Count	16384	Owner	usbodlab
Points Count	32768	Pulse Sequence	zg30	Receiver Gain	228.10	SW(cyclical) (Hz)	6172.84
Solvent	METHANOL-d4	Spectrum Offset (Hz)	1853.4569	Spectrum Type	STANDARD	Sweep Width (Hz)	6172.65
	107 000						

9/2/2015 5:14:49 PM

OriginalDateForRelativ	eTime 2015-07-18T	10:19:44		Multiplets Integrals Su	Im 0.00	Number of Nuclei	0 F's	
Acquisition Time (sec)	0.8716	Comment	A3 300MHz fluorin	ne_dec_QNP_64 MeOD {	C:\u} fbriones 10	Date	18 Jul 2015 10:19:44	
Date Stamp	18 Jul 2015 10:19:44			File Name	C:\Users\kmwk459\Desktop\OL-NMR\22-epi-c3\3\pdata\1\1r			
Frequency (MHz)	282.38	Nucleus	19F	Number of Transients	64	Origin	spect	
Original Points Count	65536	Owner	usbodlab	Points Count	65536	Pulse Sequence	zgfhigqn	
Receiver Gain	5792.60	SW(cyclical) (Hz)	75187.97	Solvent	METHANOL-d4	Spectrum Offset (Hz)	-19769.5508	
Spectrum Type	STANDARD	Sweep Width (Hz)	75186.82	Temperature (degree C	26.960			

9/2/2015 8:32:58 PM

10 0 -40 -10 -20 100 90 70 60 50 40 30 20 -30 -50 -60 -70 -80 Chemical Shift (ppm) 80

9/2/2015 8:23:14 PM

OriginalDateForRelativ	eTime 2015-08-19	T23.20.32		Number of Nuc	clei	0 C's	
cauisition Time (sec)	1.8219	Comment	A3 300MHz de	of ONP 2000 CDCI3 (C:\u3	fbriones 48	Date	19 Aug 2015 23:20:32
ate Stamp	19 Aug 2015 23:	20.32		File Name	C.\Users\kmw	k459\Desktoo\OL-NMR\2	5-dept\1\pdata\1\1r
requency (MHz)	75.48	Nucleus	13C	Number of Translents	2000	Origin	spect
riginal Points Count	32768	Owner	usbodlab	Points Count	32768	Pulse Sequence	dept135
eceiver Gain	16384.00	SW(cyclical) (Hz)	17985.61	Solvent	CHLOROFOR	RW-d	
ectrum Offset (Hz)	7547.9526	Spectrum Type	DEPT135	Sweep Width (Hz)	17985.06	Temperature (degre	e C) 26,960
7 6 5 4 3 2		¹ 2					
				· · ·			