Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary information

Development of supramolecular ensemble of AIEE active hexaphenylbenzene derivative and Ag@Cu₂O core-shell NPs: An efficient photocatalytic system for C-H activation

Radhika Chopra, Manoj Kumar and Vandana Bhalla* Department of Chemistry, UGC-Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India. Email : vanmanan@yahoo.co.in

Page No. Contents

- S4-S7 General experimental procedure.
- S8 Comparison of catalytic activity of supramolecular ensemble 1a:Ag@Cu₂O core-shell NPs with other catalytic systems reported in literature for C-H functionalization of imidazole/benzimidazole derivatives.
- **S9** Synthetic scheme of derivative **1a**.
- S10 Fluorescence spectra showing the variation of emission intensity of derivative 1 in H_2O/THF mixture with different fractions of H_2O and fluorescence spectra of derivative 1 showing the variation of emission intensity in TEG/THF mixture (0 to 90% volume fraction of TEG in THF).
- S11 Schematic diagram illustrating the preparation of Cu₂O NPs and *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs from Benedict's solution on addition of aggregates of derivative 1 and UV-vis spectra with time for gradual addition of aggregates of derivative 1 to the aqueous solution of Benedict's reagent and AgNPs.
- S12 Graphical representation of rate of formation of Ag@Cu₂O core-shell NPs.
- **S13** X-Ray diffraction pattern of *in situ* generated Ag@Cu₂O core-shell NP and TEM images of Ag@Cu₂O core-shell NPs by varying the ratio of AgNPs:Benedict's solution.

- **S14** UV-vis spectra of Ag@Cu₂O core-shell NPs by varying the ratio of AgNPs:Benedict's solution.
- S15 Overlay NMR spectra of derivative 1 and residue obtained after filtration with THF/CHCl₃ mixture and fourier transforms infrared (FTIR) absorption spectrum of derivative 1 and Ag@Cu₂O NPs.
- S16 Pictorial presentation illustrating the *in situ* generation of supramolecular ensemble1a:Ag@Cu₂O NPs.
- S17 Table showing optimization of reaction conditions for C-H arylation of 1-methyl-1*H*-imidazole (2) with iodobenzene (3a) utilizing *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs as catalyst and table showing effect of thickness of shell on photocatalytic efficiency of *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs in C-H functionalization of 1-methyl-1*H* imidazole (2) with 3a.
- S18 Thermogravimetric analysis (TGA) of derivative 1 and supramolecular ensemble1a:Ag@Cu₂O NPs.
- S19 TEM image and X-Ray diffraction pattern of Cu₂O NPs stabilized by aggregates of derivative 1.
- S20 Table showing influence of the stabilizing agent on the photocatalytic efficiency of Cu₂O NPs and Ag@Cu₂O NPs in C-H activation reaction and table showing C-H activation of 1-methyl-1*H*-imidazole (2) with haloarenes (3a/3b/3c) catalyzed by *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs in presence of visible light.
- S21 Recyclability of *in situ* generated supramolecular ensemble $1a:Ag@Cu_2O$ NPs as photocatalyst for synthesis of imidazole/benzimidazole derivatives and table showing

photocatalytic C-H activation of 1-phenyl-1*H*-benzo[*d*]imidazole (5) with haloarenes (3a/3b/3c) utilizing *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs.

- S22-26¹H NMR spectra of products (4a-4e) obtained after photocatalytic C-H activation of 1-methyl-1*H*-imidazole (2) with various haloarenes (3a/3b/3c) and substituted haloarenes (3d-3g).
- S27-31¹H NMR spectrum of products (6a-6e) obtained after C-H activation of 1-phenyl-1*H*-benzo[*d*]imidazole (5) with various haloarenes (3b/3b/3c) and substituted haloarenes (3h-3k).
- **S32** ¹H NMR of derivative 1a.
- **S33** Mass spectrum of derivative **1a**.

General experimental Procedures:

Materials :

All reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium using benzophenone and kept over molecular sieves overnight before use. For column chromatography, silica gel (60–120 mesh) was used.

Instruments :

UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer using a quartz cuvette (path length, 1 cm). The fluorescence spectra were obtained with a SHIMADZU 5301 PC spectrofluorimeter. TEM images were recorded from Transmission Electron Microscope (TEM)-JEOL 2100F. Infrared spectra were obtained on Varian 660-IR spectrometer using KBr pellets. Thermogravimetric analysis (TGA) was carried out on a EXSTAR TG/DTA 3600 at a heating rate of 10⁰C/min under nitrogen atmosphere. The amount of Ag and Cu in catalyst was determined by atomic absorption spectrophotometer (GBC Avant Ver 1.31). Sample preparation was done by reflux assisted digestion of 2 mg of catalyst with concentrated HNO₃. The resulting solution was cooled, centrifuged and filtered. The filtrate was diluted to 10 times with deionized water. Photocatalytic experiments were carried out by using the 60 W tungsten filament bulb as irradiation source. Elemental analysis (C, H, N) was performed on a Flash EA 1112 CHNS-O analyzer (Thermo Electron Corp.). ¹H NMR was recorded on a JEOL-FT NMR-AL 300 MHz and Bruker (Avance II) FT-NMR 500 MHz spectrophotometer using CDCl₃, CD₃OD and DMSO-d₆ as solvents and tetramethylsilane (Si(CH₃)₄) for internal standards. Data was reported as follows: chemical shifts in ppm (δ) and coupling constants in Hz (J). Multiplicites of signals were expressed as follows: s = singlet, d = doublet and m = multiplet.

Synthesis of silver nanoparticles (AgNPs):

The quasi-spherical AgNPs were prepared by reducing the AgNO₃ with aggregates of derivative **1** according to the previously reported method.¹ Aggregates of derivative **1** were prepared by dissolving derivative **1** (10 μ M) in H₂O:THF (7:3). To prepare AgNPs, 3 mL of aggregates of derivative **1** (10 μ M) were added to 0.1 M AgNO₃ (60 μ L). The reaction mixture so obtained was stirred at room temperature to yield greyish AgNPs. These AgNPs were washed with distilled water to remove unreacted AgNO₃ and were utilized as such in the formation of supramolecular ensemble **1a**:Ag@Cu₂O NPs. As determined by AAS, the concentration of AgNPs solution was found to be 1.9 mM.

Preparation of Benedict's stock solution (1M):

In a 100 mL volumetric flask, 10 g of Na_2CO_3 and 17.3 g of sodium citrate dihydrate was dissolved in 85 mL of distilled water. To this mixture, aqueous solution of copper sulfate pentahydrate (1.73g dissolved in 10 mL of water) was added slowly with stirring. Finally, distilled water was added to bring the final volume upto 100 mL. The resulting solution was diluted further to prepare 0.04 M Benedict's solution which was used in the generation of supramolecular ensemble **1a**:Ag@Cu₂O NPs.

Generation of supramolecular ensemble 1a:Ag@Cu₂O NPs:

(a) Ensemble consisting of 1a and Ag@Cu₂O NPs (1:1)

6 mL of AgNPs (1.9 mM) and 0.6 mL of Benedict's solution (0.04 M) were mixed and stirred at room temperature for 5 min. To this reaction mixture, 0.6 mL of aggregates of derivative **1** (0.002 M) in H₂O:THF (7:3) solution were added slowly with vigorous stirring. Immediately, color of solution was changed from dark blue to green indicating the generation of supramolecular ensemble **1a**:Ag@Cu₂O NPs. Black coloured precipitates were observed after stirring the reaction mixture continuously for 15 min. at room temperature. The resulting reaction mixture was sonicated to obtain homogeneous catalytic solution consisting of $Ag@Cu_2O$ NPs (1:1) and 3.5 mL of this catalytic solution was used as such for carrying out C-H activation reactions.

(b) Ensemble consisting of 1a and Ag@Cu₂O NPs (1:2)

For preparation of photocatalytic ensemble having Ag@Cu₂O NPs (1:2), 5 mL of AgNPs solution (1.9 mM), 0.8 mL of Benedict's solution (0.04 M) and 0.8 mL of aggregates of derivative **1** (0.002 M) in H₂O:THF (7:3) solution were mixed and 3.5 mL of this solution was used as such for carrying out C-H activation reactions.

(c) Ensemble consisting of 1a and Ag@Cu₂O NPs (2:1)

To generate photocatalytic ensemble consisting of $Ag@Cu_2O$ NPs (2:1), 16 mL of AgNPs (1.9 mM), 0.6 mL of Benedict's solution (0.04 M) and 0.6 mL of aggregates of derivative **1** (0.002 M) in H₂O:THF (7:3) solution were mixed and 5.0 mL of this solution was used as such for carrying out photocatalytic C-H functionalization reactions.

General experimental procedure for photocatalytic C-H functionalization reactions utilizing *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs:

In a 25 ml round-bottom flask (RBF), 1-methyl-1*H*-imidazole, **2** (1.0 equiv, 0.1 g), iodobenzene, **3a** (1.5 equiv) and KO^tBu (1.5 equiv) were mixed in 10 mL of H₂O:toluene (7:3) solvent mixture in presence of 3.5 mL of *in situ* generated supramolecular ensemble **1a**:Ag@Cu₂O NPs (0.02 mmol). After degassing the reaction mixture under vaccum for 2 min, the RBF was put in a water bath (to avoid heating effect) on magnetic stirrer and was irradiated with a 100 W tungsten filament bulb (0.4 W/cm²) to provide visible light for 5.5 h. After completion of the reaction, solvent was evaporated under reduced pressure and the resulting residue was dissolved in DCM. The organic layer was washed with water, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to yield the crude product which was recrystallized from DCM-hexane mixture to obtain pure product. The aqueous layer containing catalyst was reused as such for further photocatalytic reactions.

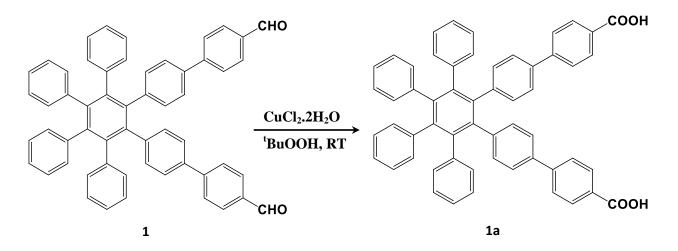

For preparation of imidazole and benzimidazole derivatives, reactants 1-methyl-1*H*-imidazole (2) and 1-phenyl-1*H*-benzimidazole (5) were synthesized according to previously reported methods.²

Table S1 Comparison of catalytic activity of supramolecular ensemble 1a:Ag@Cu ₂ O core shell NPs with
other catalytic systems reported in literature for C-H functionalization of imidazole/benzimidazole.

Journal Name	Catalyst	Catalyst loading	Ligand/ base	Temperature	Solvent	Time (in h)	Yield
Present Manuscript	Ag@Cu ₂ O core shell NPs	0.02 mmol	KO ^t Bu	Visible light	Toluene- $H_2O(3:7)$	5-7	45-82%
ACS Catal., 2016 , 6, 709	[Cp*RhCl ₂] ₂	0.003 mmol	NaOAc, AgOTf	110°C (under Ar atmosphere)	DCE	24	47-96%
Org. Biomol. Chem. , 2016 , 14, 1814	[Cp*RhCl ₂] ₂	5 mol%	Cu(OAc) ₂ ·H ₂ O	110°C (under Ar atmosphere)	Toluene	12	5-97%
<i>Chem. Sci.</i> , 2015 , 6, 6792	Ni(cod) ₂	10 mol%	Dcype, K ₃ PO ₄	110°C	t-AmylOH	12-36	53-95%
Org. Biomol. Chem., 2015 , 13, 7695	[Cp*RhCl ₂] ₂	5 mol%	Cu(OAc) ₂ ·H ₂ O	80°C (under Ar atmosphere)	t-AmylOH	4-12	53-99%
Adv. Synth. Catal,. 2015 , 357, 3885	[(p-cymene)RuCl ₂] ₂	10 mol%	$\begin{array}{c} AgSbF_6,\\ Cu(OAc)_2 \cdot H_2O\end{array}$	140°C	МеОН	24	68-99%
<i>J. Org. Chem.</i> , 2014 , 79, 5806	[NHC-Pd(II)-Im]	2-4 mol%	KO ^t Bu	120°C	Toluene- H ₂ O	6-12	42-99%
Org. Biomol. Chem., 2013 , 11, 2249	[Cp*RhCl ₂] ₂	3 mol%	Cu(OAc) ₂ , PivOH	140°C	Mesitylene	24	49-84%
<i>Tetrahedron</i> 2008 , 64, 6060	Pd(OAc) ₂	10 mol%	$\begin{array}{c} P(2-furyl)_3,\\ K_2CO_3 \end{array}$	140°C	DMF	27-87	43-73%

•

Synthetic scheme of derivative 1a:

Procedure: A solution of derivative **1** (0.1 g, 0.05 mmol) and CuCl₂.2H₂O (28 mg, 0.06 mmol) were mixed in THF. To this mixture, aqueous 'BuOOH (12.15 μ L, 0.05 mmol) was added. The resulting mixture was allowed to stir at room temperature for 24 h until the starting material disappeared (as indicated by TLC). After completion of the reaction, the residual solvent was evaporated. The crude product so obtained was treated with DCM and water. The organic layer was collected by adjusting the pH to 8.0-8.5. The organic layer was concentrated, dried over anhydrous Na₂SO₄ and purified by column chromatography to yield the derivative **1a** (0.06 g in 57.5% yield); m.p.>280^oC. ¹H NMR (500 MHz, CDCl₃, ppm) δ = 7.73 (d, 4H, J = 8.0 Hz), 7.32 (d, 4H, J = 8.0 Hz), 7.02 (d, 4H, J = 8.0 Hz), 6.80 (d, 4H, J = 8.0 Hz), 6.67-6.70 (m, 20H); *m*/*z* = 775.4733 [M + H]⁺; Elemental Analysis: Calcd for C₅₆H₃₈O₄: C 86.80; H 4.94; O 8.26. Found: C 86.78; H 4.93; O 8.23.

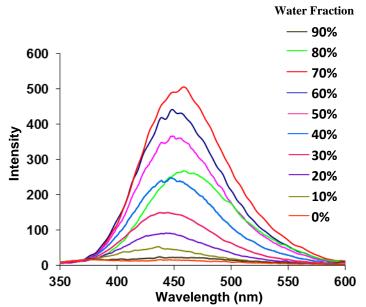


Fig. S1 Fluorescence spectra showing the variation of emission intensity of derivative 1 (5 μ M) in H₂O/THF mixture with different fractions of H₂O; $\lambda_{ex} = 305$ nm.

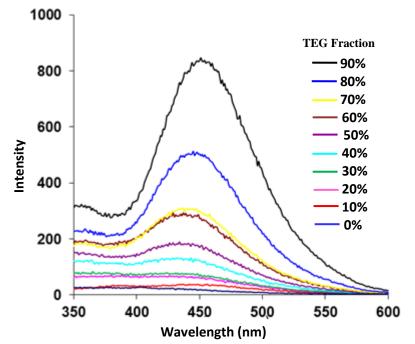
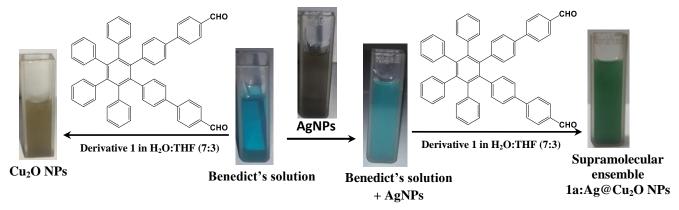



Fig. S2 Fluorescence spectra of derivative 1 (5 μ M) showing the variation of emission intensity in TEG/THF mixture (0 to 90% volume fraction of TEG in THF); λ_{ex} = 305nm.

Fig. S3 Schematic diagram illustrating the generation of Cu₂O NPs and *in situ* generated supramolecular ensemble **1a**:Ag@Cu₂O NPs from Benedict's solution on addition of aggregates of derivative **1**.

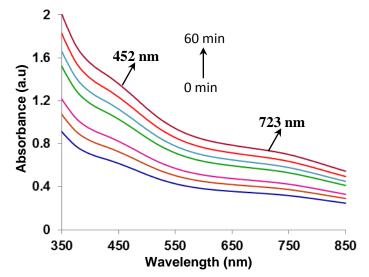
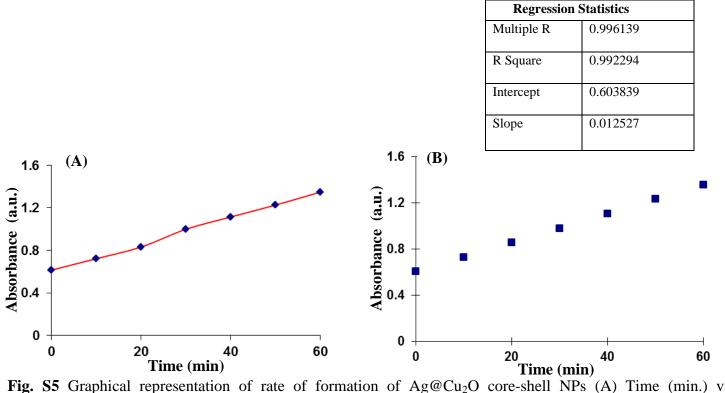



Fig. S4 UV-vis spectra with time for gradual addition of aggregates of derivative 1 (5 μ M) to the aqueous solution of Benedict's reagent and AgNPs.

Fig. S5 Graphical representation of rate of formation of $Ag@Cu_2O$ core-shell NPs (A) Time (min.) vs. absorbance plot at 452 nm (B) regression plot of A.

The first order³ rate constant for the formation of $Ag@Cu_2O$ NPs was calculated from the change of intensity of absorbance of Benedict's reagent and AgNPs in the presence of aggregates of derivative **1** at different time interval.⁴

From the time vs. absorbance plot at fixed wavelength 452 nm by using first order rate equation, we get the rate constant = $k = slope \times 2.303 = 4.80 \times 10^{-4} s^{-1}$.

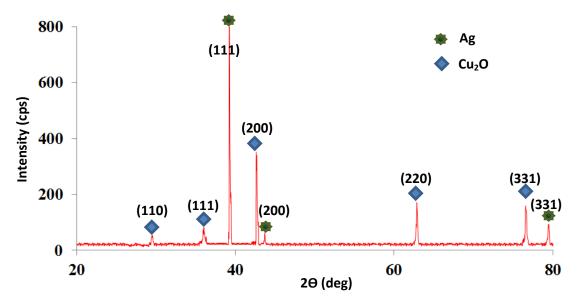
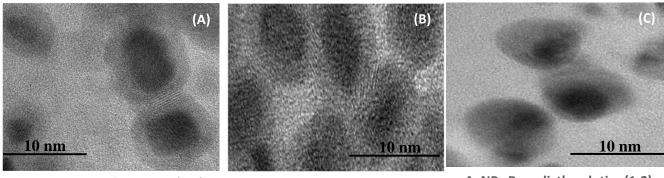



Fig. S6 X-Ray diffraction pattern of *in situ* generated Ag@Cu₂O core shell NPs.

AgNPs:Benedict's solution(2:1)

AgNPs:Benedict's solution(1:1)

AgNPs:Benedict's solution(1:2)

Fig. S7 TEM images of $Ag@Cu_2O$ core shell NPs by varying the ratio of AgNPs:Benedict's solution.

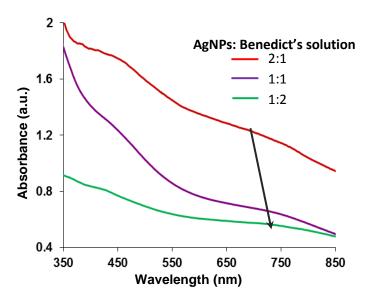
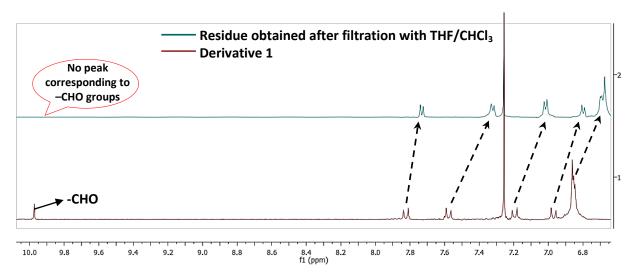



Fig. S8 UV-vis spectra of Ag@Cu₂O core-shell NPs by varying the ratio of AgNPs: Benedict's solution.

Fig. S9 Overlay NMR spectra of derivative **1** and residue obtained after filtration with THF/CHCl₃ mixture.

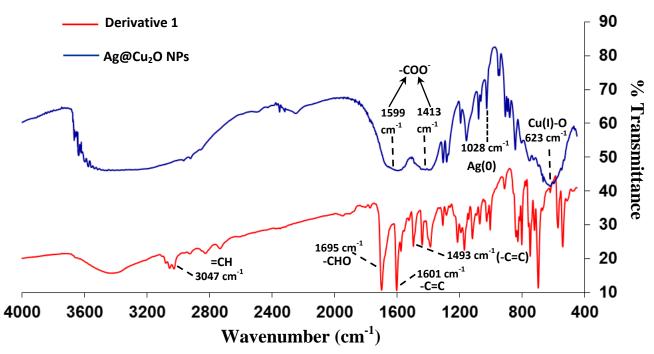


Fig. S10 Fourier transforms infrared (FTIR) absorption spectrum of derivative 1 and Ag@Cu₂O NPs.

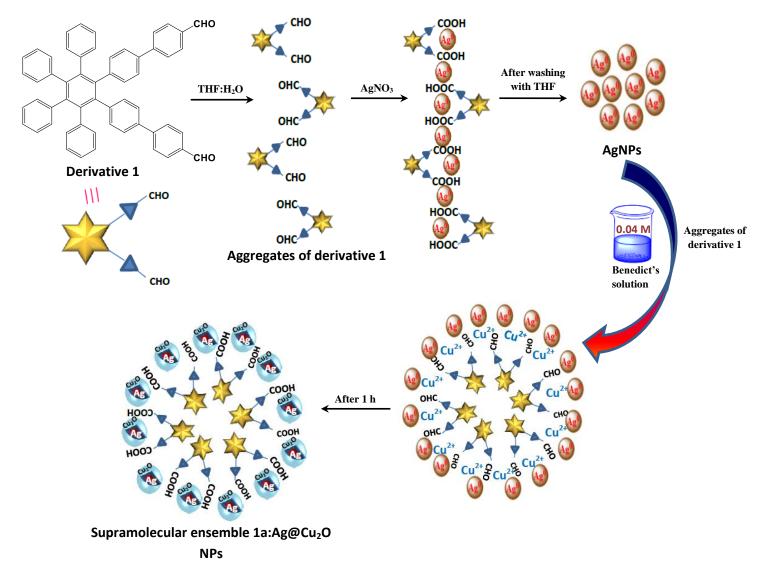


Fig. S11 Pictorial presentation illustrating the *in situ* generation of supramolecular ensemble 1a:Ag@Cu₂O NPs.

Table S2 Optimization of reaction conditions for C-H arylation of 1-methyl-1*H*-imidazole (2) with iodobenzene (3a) utilizing *in situ* generated supramolecular ensemble $1a:Ag@Cu_2O$ NPs as catalyst.

$ \begin{array}{c c} $				mol) ►	N N 4a	
	S. No.	Solvent	Temperature	Time	Yield	
	1.	Toluene	150°C	8 h	73%	
	2.	DMF	$150^{0}C$	15 h	48%	
	3.	H ₂ O:EtOH	90^{0} C	24 h	-	
	4.	H_2O :toluene (7:3)	$150^{0}C$	15 h	45%	
	5.	H_2O :toluene (7:3)	Visible light	5.5 h	80%	

Table S3 Effect of thickness of shell on photocatalytic efficiency of *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs in C-H functionalization of 1-methyl-1*H*-imidazole (2) with 3a.

S. No.	Ensemble 1a:Ag@Cu ₂ O NPs (AgNPs: Benedict's solution)	Time	Yield	$TOF(h^{-1})$
1.	1:1	5.5 h	80%	8.88
2.	1:2	5.5 h	84%	9.32
3.	2:1	5.5 h	75%	8.33

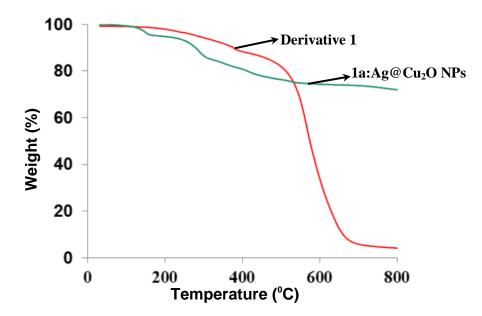


Fig. S12 Thermogravimetric analysis (TGA) of derivative 1 and supramolecular ensemble $1a:Ag@Cu_2ONPs$.

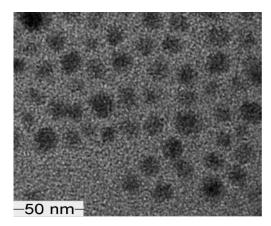


Fig. S13 TEM image showing spherical shape of Cu_2O NPs stabilized by aggregates of derivative 1; scale bar 50 nm.

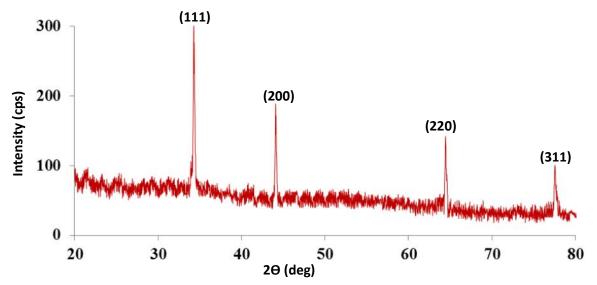
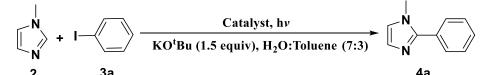
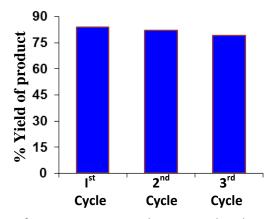



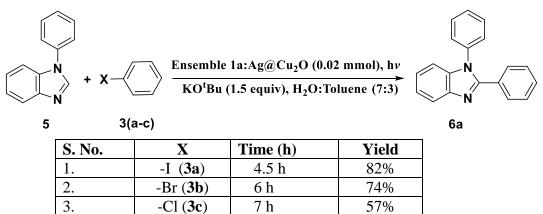
Fig. S14 X-Ray diffraction pattern of Cu₂O NPs stabilized by aggregates of derivative 1.

Table S4 Influence of the stabilizing agent on the photocatalytic efficiency of Cu₂O NPs and Ag@Cu₂O NPs in C-H activation reaction.


Z 3a 4a				
S. No.	Catalyst	Yield	Time	
1.	Cu ₂ O NPs stabilized by aggregates of derivative 1	23%	24 h	
2.	Supramolecular ensemble 1a:Ag@Cu ₂ O NPs	80%	5.5 h	
3.	Aggregates of derivative 1	-	20 h	
4.	Aggregates of oxidized derivative 1a	-	20 h	
5.	Bare Ag@Cu ₂ O NPs	32%	20 h	
6.	Bare Ag@Cu ₂ O NPs + aggregates of derivative 1	34 %	14 h	
7.	Bare Ag@Cu ₂ O NPs + aggregates of oxidized derivative 1a	78 %	8 h	
8.	Ag@Cu ₂ O NPs stabilized by aggregates of pentacenequinone	42%	16 h	

Bare Ag@Cu₂O⁵; Ag@Cu₂O NPs stabilized by aggregates of pentacenequinone⁶

Table S5 C-H activation of 1-methyl-1*H*-imidazole (2) with haloarenes (3a/3b/3c) catalyzed by *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs in presence of visible light.


S. No.	Reactant 1	Reactant 2	Product	Yield	Time
1.		I J 3a		84%	5.5 h
2.		Br 3b		68%	6 h
3.				48%	7 h

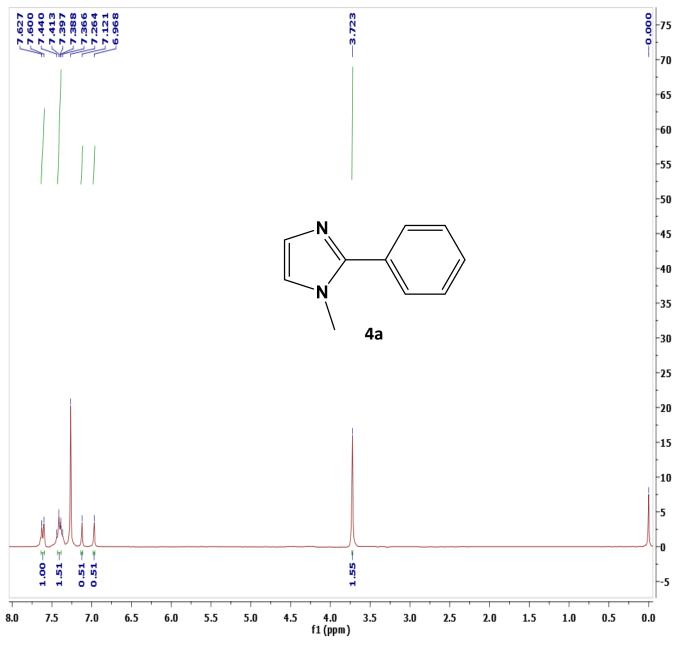
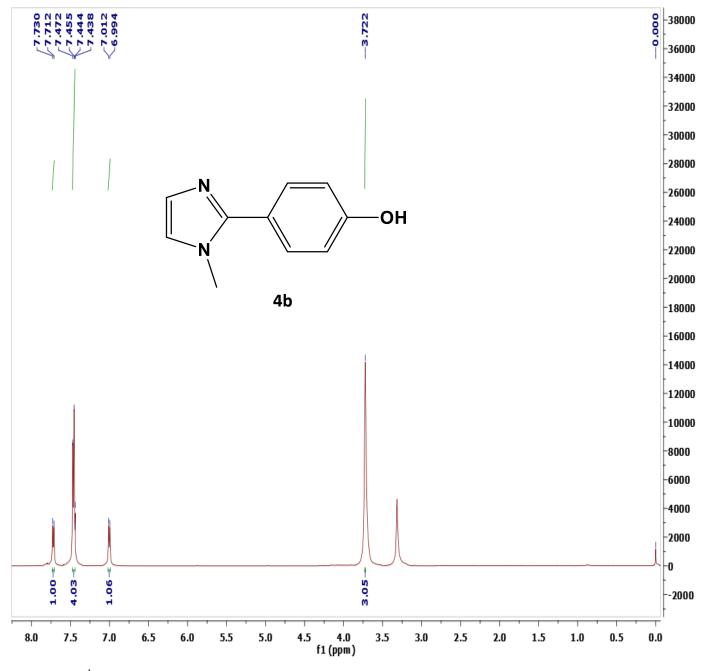
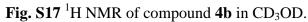

Reaction conditions: 1 (1.0 equiv), **2** (1.5 equiv), **catalyst**; Supramolecular ensemble **1a**:Ag@Cu₂O NPs (0.02 mmol), **Base**; KO^tBu (1.5 equiv), H₂O:toluene (7:3) under visible light.

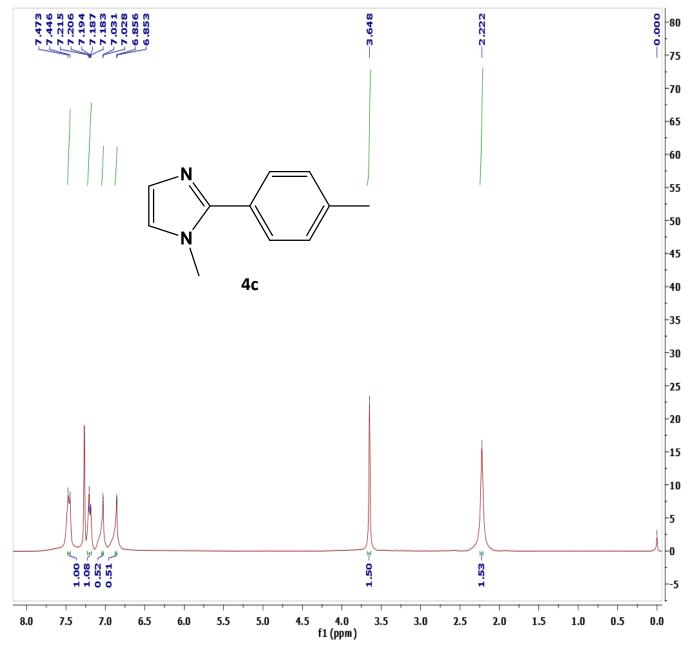
Fig. S15 Recyclability of *in situ* generated supramolecular ensemble **1a**:Ag@Cu₂O NPs as photocatalyst for synthesis of imidazole/benzimidazole derivatives.

Table S6 Photocatalytic C-H activation of 1-phenyl-1*H*-benzo[*d*]imidazole (5) with haloarenes (3a/3b/3c) utilizing *in situ* generated supramolecular ensemble 1a:Ag@Cu₂O NPs.





Compound **4a**.⁷ 1-methyl-2-phenyl-1*H* imidazole: (0.131 g in 68% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 7.61$ (d, 2H, J = 8.1 Hz), 7.37–7.44 (m, 3H), 7.12 (s, 1H), 6.97 (s, 1H), 3.72 (s, 3H).


Fig. S16 ¹H NMR of compound 4a in CDCl₃.

Compound **4b**.⁸ 4-(1-methyl-1*H*-imidazol-2-yl)phenol: (0.172 g in 81% yield). ¹H NMR (500 MHz, CD₃OD, ppm): δ = 7.72 (d, 1H, J = 9.0 Hz), 7.44-7.47 (m, 4H), 7.00 (d, 1H, J = 9.0 Hz), 3.72 (s, 3H).

Compound **4c**.⁹ 1-Methyl-2-(*p*-tolyl)imidazole: (0.168 g in 80% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 7.46$ (d, 2H, J = 8.1 Hz), 7.18-7.22 (m, 2H), 7.03 (d, 1H, J = 0.9 Hz), 6.85 (d, 1H, J = 0.9 Hz), 3.65(s, 3H), 2.22 (s, 3H).

Fig. S18 ¹H NMR of compound **4c** in CDCl₃.

Compound **4d**.⁸ 2-(4-methoxyphenyl)-1-methyl-1*H*-imidazole: (0.188 g in 82% yield). ¹H NMR (500 MHz, CDCl₃, ppm): $\delta = 7.58$ (d, 2H, J = 9.0 Hz), 7.09 (s, 1H), 6.98 (d, 2H, J = 9.0 Hz), 6.93 (s, 1H), 3.84 (s, 3H), 3.73 (s, 3H).

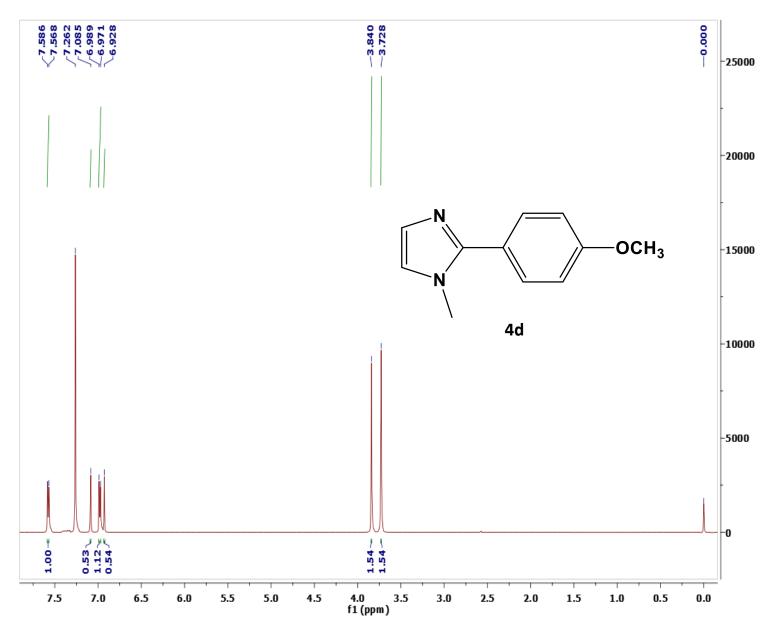
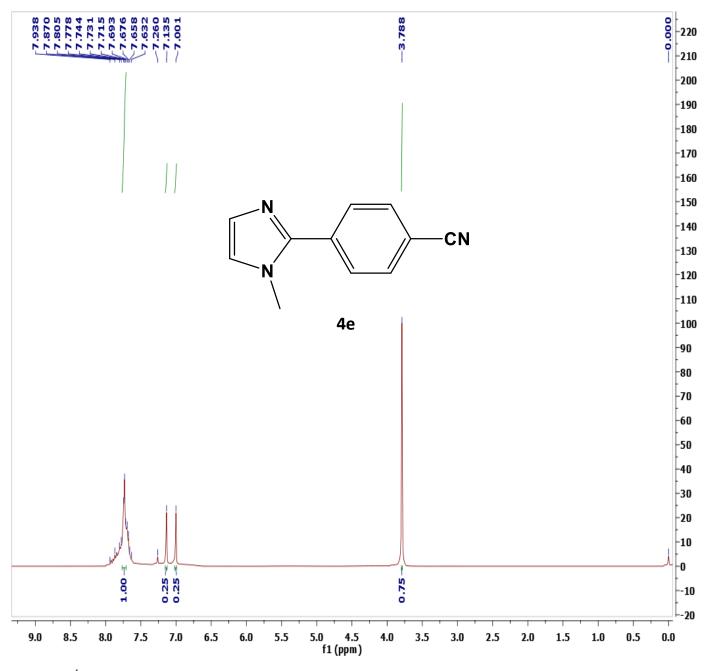
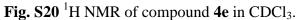
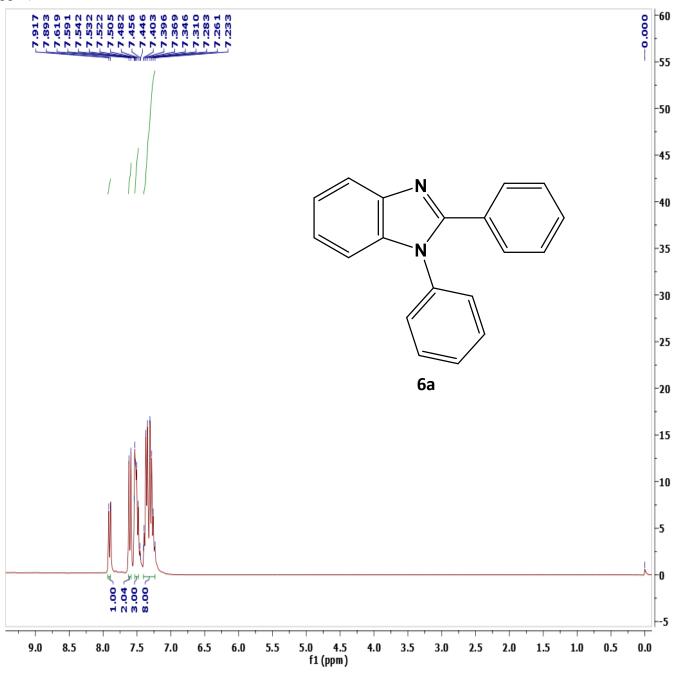





Fig. S19 ¹H NMR of compound 4d in CDCl₃.

Compound **4e**.¹⁰ 4-(1-Methylimidazol-2-yl)benzonitrile: (0.138 g in 62% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.63-7.94 (m, 4H), 7.14 (s, 1H), 7.00 (s, 1H), 3.79 (s, 3H).

Compound **6a**.¹¹ 1,2-Diphenyl-1*H*-benzo[*d*]imidazole: (0.104 g in 74% yield). ¹H NMR (300 MHz, CDCl₃, ppm): $\delta = 7.90$ (d, 1H, J = 7.2 Hz), 7.60 (d, 2H, J = 8.4 Hz), 7.45–7.54 (m, 3H), 7.23–7.40 (m, 8H).

Fig. S21 ¹H NMR of compound 6a in CDCl₃.

Compound **6b**.¹² 4-(1-Phenyl-1*H*-benzo[*d*]imidazol-2-yl)phenol: (0.112 g in 76% yield). ¹H NMR (300 MHz, DMSO-d₆, ppm) δ = 7.73 (d, 1H, J = 7.5 Hz), 7.50–7.57 (m, 3H), 7.40 (d, 2H, J = 7.5 Hz), 7.35 (d, 2H, J = 8.4 Hz), 7.28 (t, 1H, J = 7.2 Hz), 7.19 (t, 1H, J = 7.2 Hz), 7.10 (d, 1H, J = 8.1 Hz), 6.68 (d, 2H, J = 8.4 Hz).

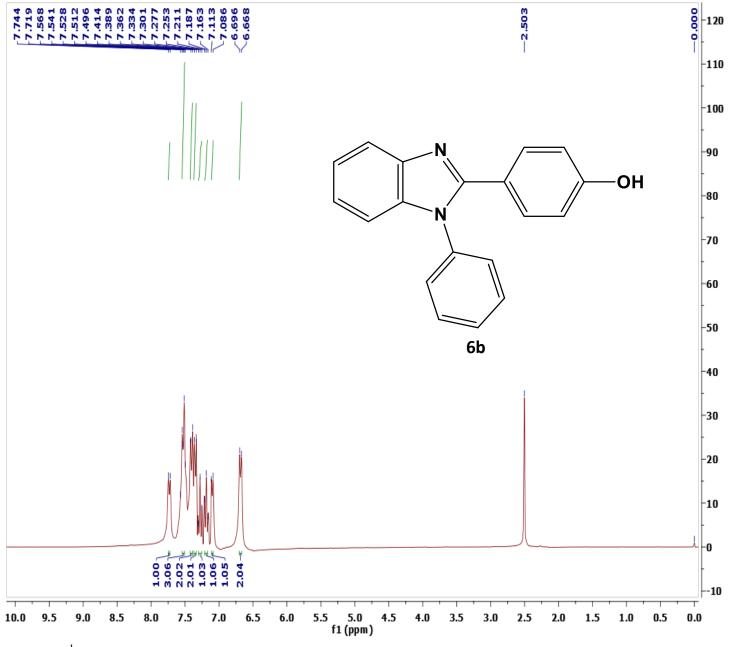


Fig. S22 ¹H NMR of compound 6b in DMSO-d₆.

Compound **6c**.¹³ 2-(3,4-dimethoxyphenyl)-1-phenyl-1*H*-benzo[*d*]imidazole: (0.143 g in 84% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.86 (d, 1H, J = 8.1 Hz), 7.46–7.56 (m, 3H), 7.27–7.36 (m, 3H), 7.14–7.19 (m, 3H), 7.10-7.11 (m, 1H), 6.73 (d, 1H, J = 8.4 Hz), 3.85 (s, 3H), 3.70 (s, 3H).

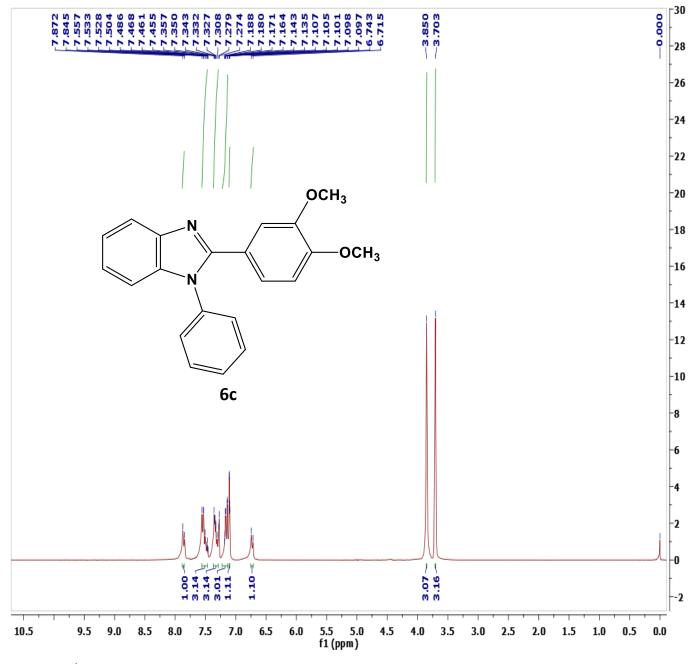
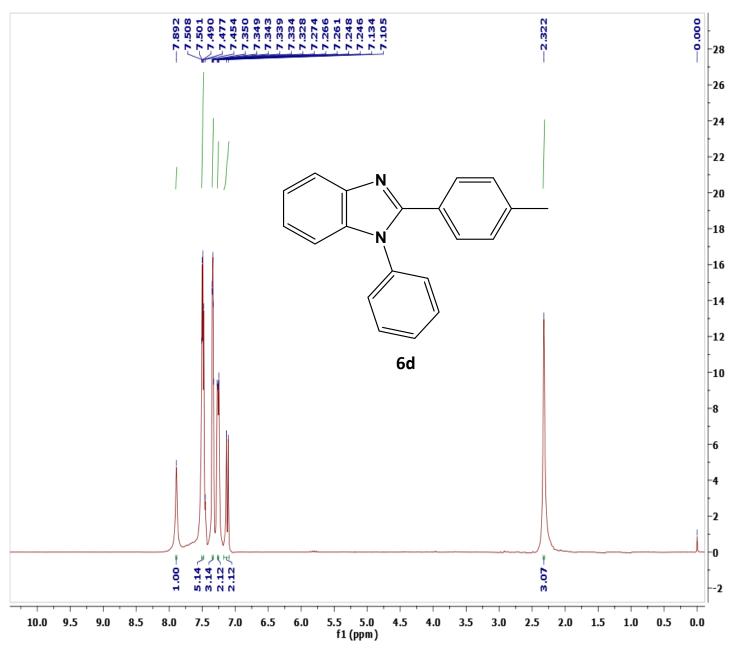
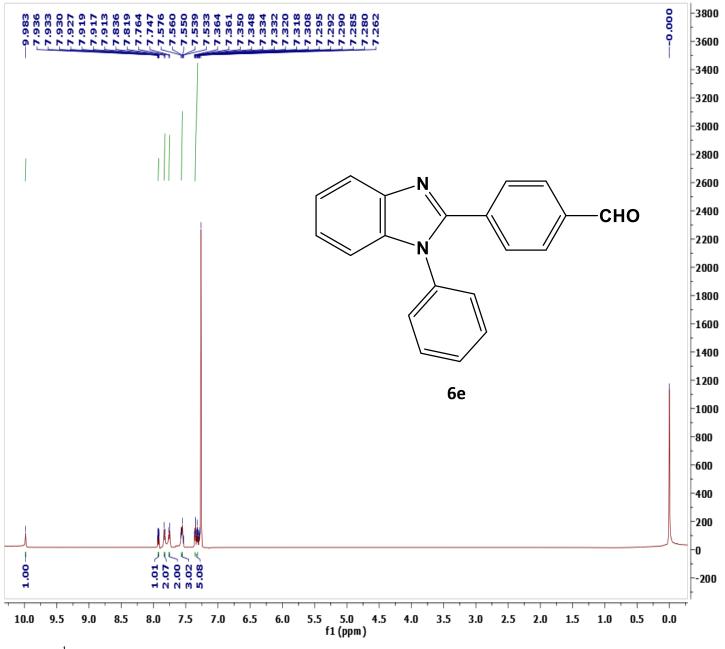




Fig. S23 ¹H NMR of compound 6c in CDCl₃.

Compound **6d**.¹⁴ 2-(4-Methylphenyl)-1-phenyl-1*H*-benzo[*d*]imidazole: (0.114 g in 78% yield). ¹H NMR (300 MHz, CDCl₃, ppm): δ = 7.89 (s, 1H), 7.45–7.51 (m, 5H), 7.33–7.35 (m, 3H), 7.25–7.27 (m, 2H), 7.12 (d, 2H, J = 8.7 Hz), 2.32 (s, 3H).

Fig. S24¹H NMR of compound **6d** in CDCl₃.

Compound **6e**.¹⁵ 4-(1-Phenyl-1*H*-benzo[*d*]imidazol-2-yl)benzaldehyde: (0.108 g in 70% yield). ¹H NMR (500 MHz, CDCl₃, ppm): δ = 9.98 (s, 1 H), 7.91–7.94 (m, 1H), 7.83 (d, 2 H, J = 8.5 Hz), 7.75 (d, 2 H, J = 8.5 Hz), 7.53–7.58 (m, 3 H), 7.28–7.36 (m, 5 H).

Fig. S25 ¹H NMR of compound **6e** in CDCl₃.

Compound **1a**: (0.06 g in 57.5% yield). ¹H NMR (500 MHz, CDCl₃, ppm) δ = 7.73 (d, 4H, J = 8.0 Hz), 7.32 (d, 4H, J = 8.0 Hz), 7.02 (d, 4H, J = 8.0 Hz), 6.80 (d, 4H, J = 8.0 Hz), 6.67-6.70 (m, 20H).

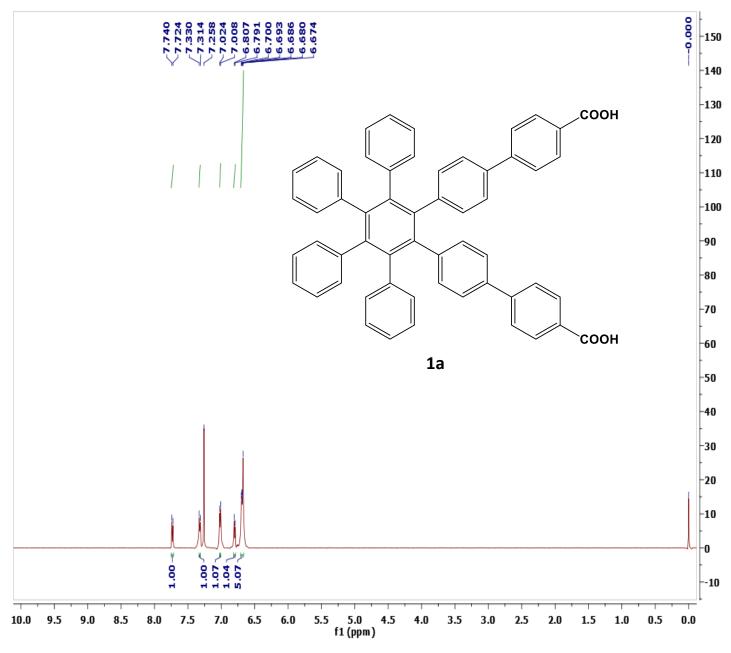


Fig. S26 ¹H NMR of derivative 1a in CDCl₃.

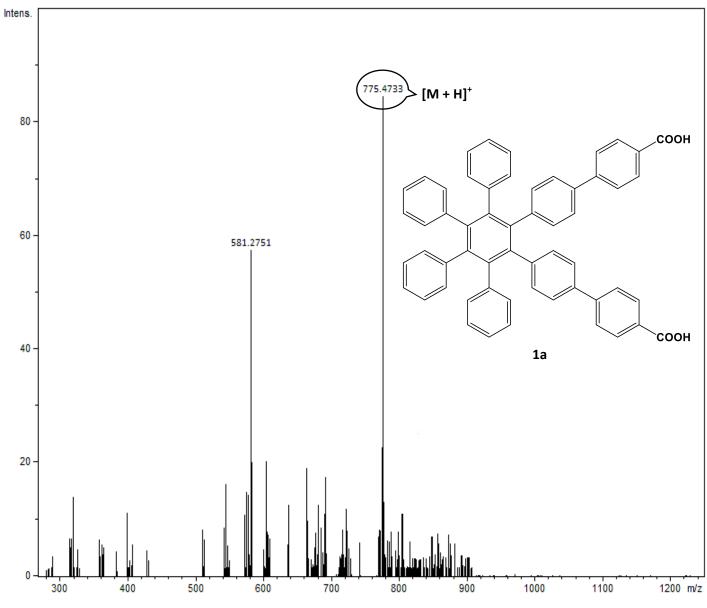


Fig. S27 Mass spectrum of derivative 1a.

- ¹ K. Sharma, G. Singh, G. Singh, M. Kumar and V. Bhalla, *RSC Adv.*, 2015, **5**, 25781.
- ² (a) Y. Zhang, W. Zhu, Y.-L. Liu, H. Wang, K. Wang, K. Li, J. H. No, L. Ayong, A. Gulati, R. Pang, L. F. -Junior, C. T. Morita and E. Oldfield, *ACS Med. Chem. Lett.* 2013, 4, 423; (b) L.-H. Zou, J. Reball, J. Mottweiler and C. Bolm, *Chem. Commun.*, 2012, 48, 11307.
- ³ M. Luty-Błocho, K. Pacławski, M. Wojnicki and K. Fitzner, *Inorg. Chim. Acta*, 2013, 395, 189.
- ⁴ (a) T. K. Sau and C. J. Murphy, *Langmuir*, 2004, 20, 6414; (b) S. Goswami, S. Das, K. Aich, D. Sarkar, T. K. Mondal, C. K. Quah and H.-K. Fun, *Dalton Trans*. 2013, 42, 15113.
- ⁵ J. Li, S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow and N. Q. Wu, ACS *Catal.*, 2013, **3**, 47.
- ⁶ K. Sharma, M. Kumar and V. Bhalla, *Chem. Commun.*, 2015, **51**, 12529.
- ⁷ Z.-S. Gu, W.-X. Chen and L.-X. Shao, J. Org. Chem., 2014, **79**, 5806.
- ⁸ K. Goossens, S. Wellens, K. V. Hecke, L. V. Meervelt, T. Cardinaels and K. Binnemans, *Chem. Eur. J.*, 2011, **17**, 4291.
- ⁹ M. J. Iglesias, A. Prieto and M. C. Nicasio, Org. Lett., 2012, 14, 4318.
- ¹⁰ P. V. Kumar, W.-S. Lin, J.-S. Shen, D. Nandi and H. M. Lee, *Organometallics*, 2011, **30**, 5160.
- ¹¹ K. Muto, T. Hatakeyama, J. Yamaguchi and K. Itami, *Chem. Sci.*, 2015, 6, 6792
- ¹² W.-S. Huang, C.-W. Lin, J. T. Lin, J.-H. Huang, C.-W. Chu, Y.-H. Wu and H.-C. Lin, *Org. Electron.*, 2009, **10**, 594.
- ¹³ S. I. Bezzubov, V. D. Doljenko, S. I. Troyanov and Y. M. Kiselev, *Inorg. Chim. Acta*, 2014, 415, 22.
- ¹⁴ J. Jayabharathi, V. Thanikachalam and K. Jayamoorthy, *Photochem. Photobiol. Sci.*, 2013, **12**, 1761.
- ¹⁵ M. Debeaux, M. W. Thesen, D. Schneidenbach, H. Hopf, S. Janietz, H. Kruger, A. Wedel, W. Kowalsky and H.-H. Johannes, *Adv. Funct. Mater.*, 2010, **20**, 399.