Gold-Catalyzed Intermolecular Formal (3+2) Cycloaddition of Stabilized Vinyldiazo Derivatives and Electronically Unbiased Allenes

Enol López, ${ }^{\text {a,b }}$ Giacomo Lonzi, ${ }^{\text {a,b }}$ Javier González, ${ }^{\text {a }}$ and Luis A. López ${ }^{\text {a,b* }}$
${ }^{a}$ Departamento de Química Orgánica e Inorgánica and ${ }^{\text {b }}$ Instituto Universitario de Química Organometálica "Enrique Moles" Universidad de Oviedo, c/ Julián Clavería 8, 33006-Oviedo, Spain

TABLE OF CONTENTS

1. General Considerations S-2
2. Summary of Catalyst Screening S-3
3. General Procedure for the Synthesis of Compounds $\mathbf{3}$ S-4
4. Characterization Data of Compounds 3 S-5
5. Reaction with phenyl-1,2-propadiene ($\mathbf{2} \mathbf{i}$) S-14
6. General Procedure for the Synthesis of Compounds 4 S-15
7. Characterization Data of Compounds $\mathbf{4}$ S-16
8. Reaction with cyclohexyl-1,2-propadiene (2k) S-18
9. Computational study S-19
10. References S-29
11. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra for new compounds S-30

1. General Considerations

All reactions were carried out under nitrogen using standard Schlenck techniques. Dichloromethane and 1,2-dichloroethane were distilled from CaH_{2}. The solvents used in column chromatography, hexane and ethyl acetate, were obtained from commercial suppliers and used without further purification. TLC was performed on aluminum-backed plates coated with silica gel 60 with F_{254} indicator. Flash column chromatography was carried out on silica gel (230-240 mesh). ${ }^{1} \mathrm{H}$ NMR (300, 400 MHz) and ${ }^{13} \mathrm{C}$ NMR (75.5 and 100 MHz) spectra were recorded at room temperature in CDCl_{3} on a Bruker DPX-300, or Bruker AVANCE-300 MHz and 400 MHz instruments. Chemical shifts are given in ppm relative to $\mathrm{TMS}\left({ }^{1} \mathrm{H}, 0.0 \mathrm{ppm}\right)$ or CDCl_{3} $\left({ }^{13} \mathrm{C}, 77.0 \mathrm{ppm}\right)$. 2D NMR experiments were recorded on a Bruker AVANCE-400 MHz. Highresolution mass spectra were determined on a VG Autospec M mass spectrometer. This study was carried out using vinyldiazoacetates $\mathbf{1 a}-\mathbf{g}^{1}$ and allenes $\mathbf{2 a}-\mathbf{k}^{2}$ (Figure S1), which were prepared according to well-known procedures previously described in the literature. Allene [D]-2k was prepared following the procedure developed by Moreau and Gaudemar. ${ }^{3}$ $\left[\mathrm{Au}(\mathrm{IPr})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{SbF}_{6}$ was prepared according to a literature procedure. ${ }^{4}$ All other reagents used in this work were of the best commercial grade available and used without further purification.


```
1a ( \(\left.\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{EWG}=\mathrm{COOEt}\right)\)
1b ( \(\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{H} ; E W G=\mathrm{COOBn}\) )
1c ( \(\left.\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{EWG}=\mathrm{COOtBu}\right)\)
1d ( \(\left.\mathrm{R}^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H} ; \mathrm{EWG}=\mathrm{COOEt}\right)\)
1e ( \(R^{1}=\) OTBS; \(R^{2}=H\); EWG = COOEt)
1f ( \(\left.\mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{EWG}=\mathrm{COOEt}\right)\)
1g ( \(\left.R^{1}=\mathrm{Me} ; \mathrm{R}^{2}=\mathrm{H} ; E W G=\mathrm{COMe}\right)\)
```

2a ($R^{3}=R^{4}=\mathrm{Me} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$)
2b $\left(R^{3}, R^{4}=\left(\mathrm{CH}_{2}\right)_{5} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}\right)$
2c $\left(R^{3}, R^{4}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}^{t} \mathrm{Bu}\left(\mathrm{CH}_{2}\right)_{2} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}\right)$
2d ($R^{3}=R^{4}=B n ; R^{5}=R^{6}=H$)
2e ($\left.R^{3}=R^{4}=P h ; R^{5}=R^{6}=H\right)$
2f ($\left.R^{3}=R^{4}=P M P ; R^{5}=R^{6}=H\right)$
$\mathbf{2 g}\left(R^{3}=\mathrm{Ph} ; \mathrm{R}^{4}=\mathrm{Me} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}\right)$
2h ($R^{3}=$ TMS; $R^{4}=\mathrm{Me} ; \mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}$)
$2 i\left(R^{3}=\mathrm{Ph} ; \mathrm{R}^{4}=\mathrm{R}^{5}=\mathrm{R}^{6}=\mathrm{H}\right)$
2j ($\left.R^{3}=R^{4}=R^{5}=R^{6}=M e\right)$
2k ($R^{3}=C y ; R^{4}=R^{5}=R^{6}=H$)
[D]-2k ($\left.R^{3}=C y ; R^{4}=D ; R^{5}=R^{6}=H\right)$

Figure S1. Starting materials used in this work

2. Summary of the Catalyst Screening

Table S1. Summary of the Catalyst Screening for the Reaction of Diazo Compound 1a and 3-methylpropa-1,2-diene (2a)

entry	catalyst	solvent	T (${ }^{\circ} \mathrm{C}$)	3a (\%) ${ }^{\text {a }}$
1	CuBr	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
2	CuBr	THF	RT	-
3	$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right]$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
4	$\mathrm{Cu}(\mathrm{OTf})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
5	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
6	AgSbF_{6}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	17
7	AuCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
8	AuCl	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
9	$\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuNTf}{ }_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	-
10	(JohnPhos)AuNTf 2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	49
11	(IPr)AuNTf ${ }_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	36
12	[IPrAu(MeCN)][SbF ${ }_{6}$]	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	RT	75
13	[IPrAu(MeCN)][SbF ${ }_{6}$]	DCE	50	23
14	$[1 P r A u(M e C N)]\left[\mathrm{SbF}_{6}\right]$	DMF	RT	5

${ }^{\text {a }}$ Yield of isolated product after column chromatography.

3. General Procedure for the Synthesis of Compounds 3

$\left[\mathrm{Au}(\mathrm{IPr})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{SbF}_{6}(21.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added to a solution of vinyldiazo compound $\mathbf{1}$ (0.5 mmol) and the corresponding allene $\mathbf{2}(2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred at room temperature until the disappearance of the starting diazo compound (monitored by TLC: 4-12 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (silica gel; hexanes/ethyl acetate mixtures) to afford the $(3+2)$ cycloadducts as colorless oils.

The reaction of diethyl (E)-4-diazopent-2-enedioate (1f) and 3-methylbuta-1,2-diene (2a) was performed at $50^{\circ} \mathrm{C}$ in dichloroethane.

4. Characterization Data of Compounds 3

3a

Ethyl 4-(propan-2-ylidene)cyclopent-1-ene-1-carboxylate (3a). The general procedure was followed using ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-methylbuta-1,2-diene (2a, $136 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 20:1) afforded compound 3 a ($68 \mathrm{mg}, 75 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.30(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.79-6.81(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-NMR: 14.3, 20.7, 20.9, 36.2, 38.0, 60.1, 124.4, 129.8, 135.7, 142.2, 165.1; HRMS (EI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 180.1150$, found 180.1153 .

3b

Benzyl 4-(propan-2-ylidene)cyclopent-1-ene-1-carboxylate (3b). The general procedure was followed using benzyl 2-diazobut-3-enoate (1b, $101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-methylbuta-1,2diene (2a, $136 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 20:1) afforded compound 3b (102 mg, 84\%) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $1.66(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 1 \mathrm{H})$, 7.37-7.41 (m, 5H); ${ }^{13}$ C-NMR: 20.8, 21.0, 36.2, 38.1, 65.9, 124.5, 128.1, 128.5, 129.6, 135.4, 136.3, 143.0, 164.8; HRMS (EI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 242.1307, found 242.1303.

3c
tert-butyl 4-(propan-2-ylidene)cyclopent-1-ene-1-carboxylate (3c). The general procedure was followed using tert-butyl 2-diazobut-3-enoate (1c, $84 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-methylbuta-1,2-diene (2a, $136 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $20: 1$) afforded compound 3 c ($68 \mathrm{mg}, 65 \%$) as a colorless oil.
${ }^{1}$ H-NMR: $1.51(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 6.71-6.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR: 20.7, 20.9, 28.2, 36.2, 37.9, 80.1, 124.1, 130.1, 137.3, 141.1, 164.6; HRMS (EI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right):$208.1463, found 208.1467.

3d

Ethyl 4-cyclohexylidenecyclopent-1-ene-1-carboxylate (3d). The general procedure was followed using ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and vinylidinecyclohexane ($\mathbf{2 b}$, $216 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 3d ($78 \mathrm{mg}, 71 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.51-1.57(\mathrm{~m}, 6 \mathrm{H}), 2.07-2.11(\mathrm{~m}, 4 \mathrm{H}), 3.20(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 2 \mathrm{H})$, $4.22(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: 14.3,26.5,27.4,31.3,31.5,35.5,37.3,60.1$, 126.3, 132.5, 135.6, 142.2, 165.2; HRMS (EI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 220.1463, found 220.1459.

3e

Benzyl 4-cyclohexylidenecyclopent-1-ene-1-carboxylate (3e). The general procedure was followed using benzyl 2-diazobut-3-enoate ($\mathbf{1 b}, 101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and vinylidinecyclohexane (2b, $216 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $\mathbf{3 e}(97 \mathrm{mg}, 69 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: 1.50-1.55 (m, 6H), 2.06-2.11 (m, 4H), $3.22(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 6.89-6.90$ (m, 1H), 7.34-7.41 (m, 5H); ${ }^{13}$ C-NMR: 26.6, 27.39, 27.42, 31.3, 31.5, 35.5, 37.4, 65.9, 126.1, 128.0, 128.1, 128.5, 132.6, 135.3, 136.3, 143.0, 164.9; HRMS (EI) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}$ $\left(\mathrm{M}^{+}\right): 282.1620$, found 282.1616 .

$3 f$
tert-Butyl 4-cyclohexylidenecyclopent-1-ene-1-carboxylate (3f). The general procedure was followed using tert-butyl 2-diazobut-3-enoate ($1 \mathrm{c}, 84 \mathrm{mg}, 0.5 \mathrm{mmol}$) and vinylidinecyclohexane (2b, $216 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $3 f(79 \mathrm{mg}, 64 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $1.50-1.54(\mathrm{~m}+\mathrm{s}, 15 \mathrm{H}), 2.06-2.11(\mathrm{~m}, 4 \mathrm{H}), 3.18(\mathrm{~s}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H})$, 6.71-6.73 $(\mathrm{m}, 1 \mathrm{H})$; ${ }^{13}$ C-NMR: 26.6, 27.4, 28.2, 31.3, 31.5, 35.5, 37.2, 80.0, 126.6, 132.3, 137.2, 141.1, 164.6; HRMS (EI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 248.1776, found 248.1779.

$3 g$

Benzyl 4-(4-(tert-butyl)cyclohexylidene)cyclopent-1-ene-1-carboxylate (3g). The general procedure was followed using benzyl 2-diazobut-3-enoate (1b, $101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1-(tert-butyl)-4-vinylidinecyclohexane (2c, $329 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $\mathbf{3 g}$ ($115 \mathrm{mg}, 68 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.94-1.19(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.86(\mathrm{~m}, 4 \mathrm{H}), 2.38-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.38(\mathrm{~m}$, $4 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: 27.6,28.0,31.2,31.4,32.5$, 35.6, 37.4, 48.1, 65.9, 125.8, 128.0, 128.5, 132.5, 135.3, 136.3, 143.0, 164.9; HRMS (EI) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 338.2246$, found 338.2244 .

3h

Benzyl 4-(1,3-diphenylpropan-2-ylidene)cyclopent-1-ene-1-carboxylate (3h). The general procedure was followed using benzyl 2-diazobut-3-enoate (1b, $101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-dibenzylpropa-1,2-diene (2d, $440 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 3 h ($118 \mathrm{mg}, 60 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $3.32(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 6.96-6.97(\mathrm{~m}$, 1H), 7.13-7.37 (m, 15H); ${ }^{13} \mathrm{C}$-NMR: 36.6, 37.9, 38.3, 38.4, 66.1, 126.1, 128.2, 128.5, 128.6, 128.7, 131.1, 134.3, 135.2, 136.2, 139.5, 139.6, 142.6, 164.7; HRMS (EI) calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 394.1933$, found 394.1938 .

$3 i$

Ethyl 4-(diphenylmethylene)cyclopent-1-ene-1-carboxylate (3i). The general procedure was followed using ethyl 2-diazobut-3-enoate ($1 \mathbf{a}, 70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2diene ($\mathbf{2 e}, 384 \mathrm{mg}, \mathbf{2} \mathbf{2} \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $\mathbf{3 i}$ ($134 \mathrm{mg}, 88 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.37(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H})$, 6.81-6.83 (m, 1H), 7.22-7.37 (m, 10H); ${ }^{13} \mathrm{C}-\mathrm{NMR}: 14.7,38.2,40.2,60.7,127.0,128.8$, 129.1, 135.8, 136.7, 137.4, 141.7, 142.7, 142.8, 165.2; HRMS (EI) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}$ $\left(\mathrm{M}^{+}\right): 304.1463$, found 304.1466 .

3j

Benzyl 4-(diphenylmethylene)cyclopent-1-ene-1-carboxylate (3j). The general procedure was followed using benzyl 2-diazobut-3-enoate ($1 \mathrm{~b}, 101 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2diene (2e, $384 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $\mathbf{3 j}$ ($128 \mathrm{mg}, 70 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 3.38(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 6.87-6.89(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ 7.40 (m, 15H); ${ }^{13}$ C-NMR: $37.8,39.8,66.0,126.6,128.2,128.4,128.5,128.6,128.7,135.0,136.2$, 136.5, 136.8, 142.1, 142.4, 164.5; HRMS (EI) calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 366.1620 , found 366.1620.

3k
tert-Butyl 4-(diphenylmethylene)cyclopent-1-ene-1-carboxylate (3k). The general procedure was followed using tert-butyl 2-diazobut-3-enoate (1c, $84 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2-diene (2e, $384 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 3k (115 mg, 69\%) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.51(\mathrm{~s}, 9 \mathrm{H}), 3.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6-72(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ 7.28 (m, 6H), 7.32-7.36 (m, 4H); ${ }^{13}$ C-NMR: 28.2, 37.9, 39.7, 80.3, 126.5, 128.3, 128.4, 128.7, 128.8, 136.2, 136.9, 137.3, 140.2, 142.3, 142.5, 164.3; HRMS (EI) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}$ $\left(\mathrm{M}^{+}\right): 332.1776$, found 332.1779 .

tert-Butyl 4-(bis(4-methoxyphenyl)methylene)cyclopent-1-ene-1-carboxylate (3I). The general procedure was followed using tert-butyl 2-diazobut-3-enoate (1c, $84 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-di(4-methoxyphenyl)propa-1,2-diene (2f, $504 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 31 ($98 \mathrm{mg}, 50 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $1.49(\mathrm{~s}, 9 \mathrm{H}), 3.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H}), 6.70(\mathrm{t}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.84-6.88(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: 28.6,38.3,40.2,55.6,80.7,114.0$, 114.05, 130.2, 130.3, 135.5, 135.7, 136.4, 137.3, 140.7, 158.4, 164.8; HRMS (EI) calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{4}\right]^{+}\left(\mathrm{M}^{+}\right): 392.1988$, found 392.1985 .

3m

Ethyl (Z)-4-(1-phenylethylidene)cyclopent-1-ene-1-carboxylate (3m). The general procedure was followed using ethyl 2-diazobut-3-enoate ($1 \mathrm{a}, 70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-phenylbuta-1,2diene ($\mathbf{2 g}, 260 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $40: 1$) afforded compound $\mathbf{3 m}(84 \mathrm{mg}, 69 \%)$ as a $15: 1 \mathrm{Z} / E$ mixture as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.85-6.88 (m, 1H), 7.24-7.27 (m, 3H), 7.33-7.38 (m, 2H); ${ }^{13}$ C-NMR: 14.7, 21.4, 37.4, 39.4, 60.6, 126.7, 127.8, 128.6, 130.2, 134.1, 136.5, 141.5, 144.2, 165.3; HRMS (EI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right):$242.1307, found 242.1305.

3n

Ethyl 4-(1-(trimethylsilyl)ethylidene)cyclopent-1-ene-1-carboxylate (3n). The general procedure was followed using ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-trimethylsilylbuta-1,2-diene ($2 \mathrm{~h}, 252 \mathrm{mg}, 2.0 \mathrm{mmol}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude reaction mixture revealed that two isomers were formed in about 4:1 ratio. Chromatographic work-up (silica gel; hexanes) allowed the isolation of the major isomer in pure form ($3 \mathrm{n}, 55 \mathrm{mg}, 46 \%$) as a colorless oil. The configuration of this isomer could not be unambiguously assigned due to overlapping of key signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 0.23(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 5 \mathrm{H}$, accidental equivalence of methyl and methylene groups), 4.21 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.89 (br s, 1H); ${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-0.2,14.0,20.2,22.8,25.7,60.2,134.1,134.3,137.6,138.0,167.3 ;$ HRMS (EI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}\right]^{+}\left(\mathrm{M}^{+}\right):$238.1389, found 238.1386.

30

Ethyl 2-methyl-4-(propan-2-ylidene)cyclopent-1-ene-1-carboxylate (30). The general procedure was followed using ethyl 2-diazo-3-methylbut-3-enoate ($1 \mathrm{~d}, 77 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-methylbuta-1,2-diene (2a, $136 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate $100: 1$) afforded compound 30 ($54 \mathrm{mg}, 56 \%$) as a colorless oil. An unknown byproduct with identical mass (GC-MS analysis) was observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. On the basis of similar results with other allene derivatives, this byproduct is supposed to be ethyl 3,6-dimethyl-5-methylenehepta-2,6-dienoate.
$\left.{ }^{1} \mathrm{H}-\mathrm{NMR}: 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 3.16 \mathrm{br} \mathrm{s}, 2 \mathrm{H}\right), 3.27(\mathrm{br} \mathrm{s}$, 2 H), 4.24 ($\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}: 14.4,16.3,20.6,20.7,38.3,45.1,59.7,123.4,126.5$, 128.4, 154.1, 166.1; HRMS (EI) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 194.1307, found 194.1305.

3p

Ethyl 4-(diphenylmethylene)-2-methylcyclopent-1-ene-1-carboxylate (3p). The general procedure was followed using ethyl 2-diazo-3-methylbut-3-enoate (1d, $77 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2-diene (2e, $384 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 3p (48 mg, 30\%) and 3p' (24 mg, 15\%) as colorless oils.
${ }^{1} \mathrm{H}$-NMR: $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.23-7.38 (m, 10H); ${ }^{13}$ C-NMR: 14.4, 16.1, 39.8, 46.7, 59.8, 126.2, 126.5, 128.4, 128.8, 135.4, 135.7, 142.2, 142.6, 153.4, 165.8; HRMS (EI) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 318.1620$, found 318.1620.

$3 p^{\prime}$

Ethyl (Z)-3-methyl-4-(3-phenyl-1H-inden-2-yl)but-2-enoate (3p'). ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.33$ (t, J = 7.2 Hz , $3 H), 1.71(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 7.19-7.45(\mathrm{~m}$, 9H); ${ }^{13}$ C-NMR: 14.3, 24.6, 32.3, 40.4, 59.7, 117.2, 119.7, 123.5, 124.4, 126.2, 127.3, 128.4, 128.5, 129.2, 135.2, 140.8, 141.3, 142.7, 157.5, 166.4; HRMS (EI) calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}$ $\left(\mathrm{M}^{+}\right)$: 318.1620, found 318.1621. The Z configuration of $3 p^{\prime}$ was determined by NOE experiments.

$3 q$

Ethyl 4-cyclohexylidene-2-methylcyclopent-1-ene-1-carboxylate (3q). The general procedure was followed using ethyl 2-diazo-3-methylbut-3-enoate (1d, $77 \mathrm{mg}, 0.5 \mathrm{mmol}$) and
vinylidenecyclohexane (2b, $216 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 100:1) afforded compound $3 q\left(33 \mathrm{mg}, 28 \%\right.$) and $3 \mathbf{q}^{\prime}(27 \mathrm{mg}, 23 \%$) as colorless oils.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.55(\mathrm{~m}, 6 \mathrm{H}), 2.01-2.15(\mathrm{~m}+\mathrm{s}, 7 \mathrm{H}), 3.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.30$ (br s, 2H), 4.22 (q, J = $7.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}: 14.4,16.3,26.6,27.4,31.1,31.3,37.6,44.4,59.6$, 124.8, 126.4, 131.6, 154.1, 166.1; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 234.1620$, found 234.1622.

$3 q^{\prime}$

Ethyl (Z)-5-(cyclohex-1-en-1-yl)-3-methylhexa-2,5-dienoate (3q'). ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.29$ (t, J = 7.2 Hz , $3 \mathrm{H}), 1.54-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.26(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.79$ $(\mathrm{s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.93(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$-NMR: 14.3, 22.1, 22.9, 24.6, 25.9, 26.0, 37.4, 59.5, 110.3, 117.1, 125.0, 135.8, 145.0, 158.8, 166.4; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 234.1620, found 234.1620. The Z configuration of $3 q^{\prime}$ was determined by NOE experiments.

Ethyl 2-(tert-butyldimethylsilyloxy)-4-(diphenylmethylene)cyclopent-1-ene-1-carboxylate (3r). The general procedure was followed using ethyl 3-((tert-butyldimethylsilyl)oxy)-2-diazobut-3-enoate (1e, $135 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2-diene (2e, $384 \mathrm{mg}, 2.0$ mmol). Final chromatographic purification (silica gel; hexanes/ethyl acetate 20:1) afforded compound 3 ($55 \mathrm{mg}, 25 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $0.19(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.33(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}:-3.7,14.8,18.4,25.7,36.5,42.3,59.6,107.7,126.8$, 128.5, 128.6, 128.8, 129.0, 132.4, 136.6, 141.8, 142.5, 162.1, 165.0; HRMS (EI) calculated for $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}\right]^{+}\left(\mathrm{M}^{+}\right): 434.2277$, found 434.2271.

3s

Diethyl 4-(propan-2-ylidene)cyclopent-1-ene-1,3-dicarboxylate (3s). The general procedure was followed using diethyl (E)-4-diazopent-2-enedioate ($\mathbf{1 f}, 106 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 3-methylbuta-1,2-diene (2a, $136 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 40:1) afforded compound 3 s ($53 \mathrm{mg}, 42 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.40(\mathrm{~m}$, $2 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.27-4.30(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.71(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR: 14.2, 14.3, 20.9, 21.4, 36.4, 55.1, 60.5, 61.1, 128.5, 128.9, 138.6, 138.9, 164.6, 171.4; HRMS (EI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{4}\right]^{+}\left(\mathrm{M}^{+}\right):$252.1362, found 252.1361.

3t

1-[4-(diphenylmethylene)-2-methylcyclopent-1-en-1-yl]ethan-1-one (3t). The general procedure was followed using 3-diazo-4-methylpent-4-en-2-one (1g, $62 \mathrm{mg}, 0.5 \mathrm{mmol}$) and 1,1-diphenylpropa-1,2-diene (2e, $384 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 20:1) afforded compound 3 t ($58 \mathrm{mg}, 40 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $2.12(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: 16.7$, 30.4, 40.4, 47.2, 126.6, 128.4, 128.7, 134.6, 135.4, 135.6, 142.2, 142.4, 151.8, 197.6; HRMS (EI) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}\right]^{+}\left(\mathrm{M}^{+}\right):$288.1514, found 288.1512 .

5. Reaction with phenyl-1,2-propadiene (2i)

Ethyl 4-benzylidenecyclopent-1-ene-1-carboxylate (3u) and ethyl 4-methylene-5-phenylcyclopent-1-ene-1-carboxylate (3u'). The general procedure was followed using ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and phenylallene ($\mathbf{2 i}, 232 \mathrm{mg}, 2.0 \mathrm{mmol}$). Final chromatographic purification (silica gel; hexanes/ethyl acetate 100:1) afforded an inseparable 4: 1 mixture of 3 u and $3 \mathrm{u}^{\prime}(69 \mathrm{mg}, 60 \%$).

3u

$3 u^{\prime}$
${ }^{1} \mathrm{H}-\mathrm{NMR}$ (major isomer 3 u): $1.33(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.50-3.61(\mathrm{~m}, 4 \mathrm{H}), 4.25(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.44-6.46 (m, 1H), 6.87-6.89 (m, 1H), 7.17-7.38 (m,5H); (minor isomer 3ú, only clearly assignable signals are listed): $1.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.36-3.41(\mathrm{~m}, 2 \mathrm{H}), 4.00-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.62$ (br s, 1H), $4.89(b r s, 1 H), 5.08-5.10(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-NMR (major isomer 3u): 14.3, 37.1, 42.2, 60.4, 123.9, 126.4, 127.5, 128.0, 128.4, 135.7, 137.5, 139.9, 141.2, 141.5, 142.3, 164.7; (minor isomer 3u', only clearly assignable signals are listed): 14.0, 39.1, 55.2, 60.1, 110.5, 142.3, 143.8, 152.0, 164.2; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right): 228.1150$, found 228.1148.
6. General procedure for the synthesis of triene derivatives 4a-c from vinyldiazo compounds 1a-c and tetramethylallene (2j)

$\left[\mathrm{Au}(\mathrm{IPr})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{SbF}_{6}(21.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ was added to a solution of vinyldiazo compound 1 (0.5 mmol) and 2,4-dimethylpenta-2,3-diene ($2 \mathrm{j}, 192 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL). The mixture was stirred at room temperature until the disappearance of the starting diazo compound (monitored by TLC: 4-12 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (silica gel; hexanes/ethyl acetate 20:1) to afford triene derivatives 4a-c.

7. Characterization Data of Compounds 4

4a

Ethyl (E)-6-methyl-5-(prop-1-en-2-yl)hepta-2,5-dienoate (4a). The general procedure was followed using ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$). Final chromatographic purification afforded compound 4a ($86 \mathrm{mg}, 83 \%$) as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.29(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.18(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{br} \operatorname{s~1H}), 4.94(\mathrm{br} s, 1 \mathrm{H}), 5.79(\mathrm{dt}, J=15.6$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}$, $J=15.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13}$ C-NMR: 14.6, 20.2, 22.1, 22.9, 35.0, 60.5, 114.3, 121.6, 128.9, 132.3, 146.3, 147.2, 167.2; HRMS (EI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 208.1463, found 208.1467.

4b

Benzyl (E)-6-methyl-5-(prop-1-en-2-yl)hepta-2,5-dienoate (4b). The general procedure was followed using benzyl 2-diazobut-3-enoate (1b, $101 \mathrm{mg}, 0.5 \mathrm{mmol}$). Final chromatographic purification afforded compound 4b ($78 \mathrm{mg}, 58 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$-NMR: $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{br} \mathrm{s} 1 \mathrm{H}), 4.96(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{dt}, J=15.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dt}, J=15.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.41$ (m, 5H); ${ }^{13}$ C-NMR: 19.9, 21.8, 22.6, 34.6, 66.0, 114.0, 120.9, 128.2, 128.6, 131.8, 136.2, 145.8, 147.6, 166.6; HRMS (EI) calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 270.1620, found 270.1617.

4c
tert-Butyl (E)-6-methyl-5-(prop-1-en-2-yl)hepta-2,5-dienoate (4c). The general procedure was followed using tert-butyl 2-diazobut-3-enoate (1c, $84 \mathrm{mg}, 0.5 \mathrm{mmol}$). Final chromatographic purification afforded compound $\mathbf{4 c}(71 \mathrm{mg}, 60 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.62$ $(\mathrm{m}, 1 \mathrm{H}), 4.94-4.95(\mathrm{~m}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.6$ and $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=15.6$ and $6.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13}$ C-NMR: 19.8, 21.8, 22.6, 28.2, 34.4, 80.0, 113.8, 122.9, 128.3, 132.1, 145.6, 145.9, 166.3; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right)$: 236.1776, found 236.1778.

8. Reaction with cyclohexyl-1,2-propadiene (2k)

$\left[\mathrm{Au}(\mathrm{IPr})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right] \mathrm{SbF}_{6}$ ($21.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added to a solution of ethyl 2-diazobut-3-enoate (1a, $70 \mathrm{mg}, 0.5 \mathrm{mmol}$) and cyclohexylpropa-1,2-diene ($\mathbf{2 k}, 244 \mathrm{mg}, 2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The mixture was stirred at room temperature until the disappearance of the starting diazo compound (monitored by TLC: 8 h). The solvent was removed under reduced pressure and the resulting residue was purified by flash chromatography (silica gel; hexanes/ethyl acetate $40: 1$) to afford a $4: 1$ mixture (GC/MS) of 5 and 5^{\prime} ($41 \mathrm{mg}, 35 \%$)

5

Ethyl (E)-7-cyclohexylhept-2-en-6-ynoate (5). ${ }^{1} \mathrm{H}-\mathrm{NMR}: 1.22-1.50(\mathrm{~m}+\mathrm{t}, 9 \mathrm{H}$), 1.60-1.79 (m, $4 \mathrm{H}), 2.31-2.44(\mathrm{~m}, 5 \mathrm{H}), 4.21(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.89(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{dt}, J=15.0$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$-NMR: 14.3, 17.8, 24.8, 25.9, 29.0, 31.9, 33.0, 60.2, 78.3, 86.0, 122.2, 147.2, 166.5; HRMS (EI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}\right]^{+}\left(\mathrm{M}^{+}\right):$234.1620, found 234.1624. NMR spectroscopic data of compound 5 macht those reported in the literature (G. A. Molander, W. H. Retsch, J. Org. Chem. 1998, 63, 5507).

An experiment performed with the deuteriated allene [D]-2k afforded the following result:

9. Computational study

Preliminary Density-functional theory calculations on the reaction mechanism of the goldcatalyzed reaction of unbiased allenes and vinyldiazo derivatives, using the hybrid B3LYP functional, have been carried out. The 6-31G(d) basis set was employed for all elements, with the exception of gold which has been described with the LANL2DZ basis set and pseudopotential. The stationary points located were fully optimized and characterized to be a minimum or a first-order saddle point (transition structure) by computing the harmonic vibrational frequencies. The connection of either, the reactants or products, with the corresponding transition structure was established by computation of the intrinsic reaction coordinate (IRC). ${ }^{5}$ All the calculations described in this work were carried out with Gaussian09 package. ${ }^{6}$

The geometries of ethyl 2-diazo-3-butenoate (1a) and dimethyl (2a)- or cyclohexylallene (2k) as reactants and the gold (I)-NHC-carbene complex (A), as catalyst are shown in Figure S2.

$1 \mathbf{a}$

A

$2 \mathbf{2}$

2k

Figure S2. Selected bond lenghts (Å) for reactants and gold (I) catalyst.

First, the coordination of allenes and the gold catalyst was studied. The complexes between the catalyst \mathbf{A} and the allenes $\mathbf{2 a}$ and $\mathbf{2 k}$ were characterized, and in both cases, the complexation to the external or the internal double bond was considered (Figure S3).

2k-A-ext

2k-A-int

Figure S3. Selected bond lenghts (\AA) for the complexes formed between the NHC-gold carbene (A) and allenes $\mathbf{2 a}$ and $\mathbf{2 k}$.

The coordination of the allenes to the catalyst is predicted to happen without activation barrier, and the complexation free-energies, $\Delta \mathrm{G}$ are collected in Table S2.

Table S2.

Complex	$\Delta \mathrm{G}\left(\mathrm{kcal} \mathrm{mol}{ }^{-1}\right)^{*}$
2a-A-ext	-23.5
2a-A-int	-21.3
2k-A-ext	-22.4
2k-A-int	-20.1
*Relative to the free reactants.	

The data shown in Table S2 indicates that the coordination of gold catalyst to the external double bond of the allene is favoured, which can be understood on steric grounds, the internal position being more sterically crowded than the external one. The most salient geometrical features of these complexes are the increase (relative to the free cumulene) of the length of the double bond complexed to gold, and the slight bending of the C-C-C moiety in the case of the complexes involving the internal double bond.

On the other hand, the reaction of diazoester derivative 1a with the gold (I)-NHC-carbene complex, A, involves a barrierless coordination of gold to the diazo-carbon atom leading to the intermediate I (Figure S4). The diazo-carbon atom in I is slightly pyramidalized and its distance to the nitorgen of the diazo group has increased, as compared with the diazoester 1a.

Figure S4. Stationary points located for the reaction of diazoester 1a with NHC-gold carbene \mathbf{A}. Selected bond lenghts (\AA), bond angles (degrees) and relative Gibbs free-energies (kcal mol ${ }^{-1}$) are shown.

A transition state (TS), corresponding to the loss of dinitrogen from intermediate I was found, and leads to the NHC-gold(I) carbene intermediate II. As could be expected, the normal mode associated with the imaginary frequency of TS, corresponds to the stretching of the bond between the diazo carbon atom and one of the nitrogen atoms. The gold-carbene intermediate II shows a length of 2.009 Å between the gold atom and the carbon atom coming from the reactant 1a. In addition, the C-C-C angle in intermediate II is very close to the value corresponding to the sp^{2} hybridization.

The dinitrogen molecule is almost fully formed in the transition structure, and the loss of the very stable N_{2} molecule can be seen as the driving force of the reaction, with a predicted value for the reaction free-energy of $32.7 \mathrm{kcal} \mathrm{mol}^{-1}$.

According to these data, the key step in the catalytic cycle is the activation of the diazocompound derivative 1a by the NHC-gold complex A: this process is very favoured thermodynamically, and leads to the formation of the gold carbene derivative II, an electrophilic intermediate which could easily react with the allene component.

Cartesian Coordinates and Gibbs free-Energies (au) of the Stationary Points.

	1a				2a				2a-A-ext			
C	C	-0.9457	1.7103	0.0001	C	0.8729	-0.0000	0.0001	C	-1.7550	2.9043	0.4808
C	C	-1.9176	0.7875	0.0002	C	-0.4388	-0.0001	0.0001	C	-1.1020	2.4238	-0.5497
C	C	-1.7844	-0.6696	0.0002	C	-1.7469	-0.0001	0.0001	C	-0.0690	-3.9759	0.3932
	N	-2.9096	-1.3638	0.0003	C	1.6688	-1.2889	0.0000	C	-0.4643	2.1363	-1.7031
	C	-0.5980	-1.5461	0.0002	C	1.6685	1.2891	0.0001	C	-2.0996	2.1269	1.7281
	H	-2.9531	1.1252	0.0001	H	-2.3213	0.0001	-0.9257	H	0.5813	2.4146	-1.8446
	H	-1.2108	2.7626	0.0001	H	1.0177	-2.1669	-0.0006	C	1.2529	-3.6681	0.4411
	H	0.1057	1.4557	0.0001	H	2.3206	-1.3417	0.8829	C	-2.2061	4.3545	0.4318
	N	-3.8760	-1.9617	0.0001	H	2.3215	-1.3411	-0.8822	H	-1.7601	1.0894	1.6832
	0	-0.6551	-2.7626	0.0000	H	2.3207	1.3418	-0.8824	H	-3.1856	2.1328	1.8800
	0	0.5517	-0.8406	0.0003	H	2.3207	1.3419	0.8826	N	-0.7404	-2.8121	0.0434
C	C	1.7643	-1.6332	0.0003	H	1.0171	2.1669	0.0000	H	-1.6467	2.6081	2.6035
	C	2.9364	-0.6707	0.0001	H	-2.3215	-0.0002	0.9257	H	-1.7697	4.9053	1.2736
	H	1.7602	-2.2792	-0.8830					H	-3.2968	4.4051	0.5328
	H	1.7604	-2.2790	0.8837		10490			N	1.3637	-2.3207	0.1262
	H	2.9193	-0.0309	0.8884					H	-1.9177	4.8508	-0.4973
	H	2.9192	-0.0312	-0.8884					H	-1.0292	1.8902	-2.6035
	H	3.8760	-1.2337	0.0001					Au	-0.2742	0.1319	-0.6585
									C	0.1380	-1.7882	-0.1205
$\mathrm{G}=-\mathbf{4 9 3 . 2 4 0 2 4 1}$									C	-2.1699	-2.7296	-0.1215
2j					A				C	2.6165	-1.6094	0.0711
									H	-0.5907	-4.9053	0.5584
	C	-1.2267	-0.0001	0.5161	C	0.6796	1.6371	0.2480	H	2.1162	-4.2690	0.6797
	C	-2.3951	-0.0001	-0.0733	C	-0.6796	1.6371	0.2480	C	-2.9935	-3.0115	0.9702
	C	-3.5580	0.0000	-0.6726	N	1.0882	0.3185	0.0952	C	-4.3784	-2.9561	0.8076
	H	-4.0674	0.9264	-0.9334	N	-1.0882	0.3185	0.0952	C	-4.9272	-2.6183	-0.4318
	H	-4.0674	-0.9263	-0.9335	C	-0.0000	-0.4791	-0.0070	C	-4.0919	-2.3413	-1.5166
	C	0.1120	-0.0001	-0.1964	C	2.4670	-0.1080	0.0381	C	-2.7053	-2.4023	-1.3692

H	-1.1897	-0.0002	1.6084	C	-2.4670	-0.1080	0.0381	H	-2.5558	-3.2599	1.9326	
C	0.9230	1.2683	0.1502	Au	-0.0000	-2.4377	-0.3227	H	-5.0262	-3.1735	1.6513	
C	2.3076	1.2669	-0.5169	H	1.3927	2.4377	0.3666	H	-6.0053	-2.5775	-0.5539	
C	3.1022	0.0000	-0.1680	H	-1.3926	2.4377	0.3666	H	-4.5174	-2.0929	-2.4841	
C	2.3077	-1.2669	-0.5170	C	2.9729	-0.9361	1.0427	H	-2.0462	-2.2201	-2.2123	
C	0.9231	-1.2684	0.1502	C	4.3108	-1.3296	0.9808	C	3.5829	-2.0150	-0.8514	
H	-0.0768	-0.0001	-1.2790	C	5.1255	-0.8874	-0.0642	C	4.8059	-1.3442	-0.8915	
H	1.0453	1.3241	1.2429	C	4.6064	-0.0504	-1.0553	C	5.0521	-0.2797	-0.0210	
H	0.3552	2.1593	-0.1452	C	3.2688	0.3441	-1.0113	C	4.0771	0.1146	0.8984	
H	2.8672	2.1631	-0.2195	H	2.3387	-1.2454	1.8678	C	2.8530	-0.5538	0.9542	
H	2.1827	1.3261	-1.6083	H	4.7172	-1.9695	1.7578	H	3.3750	-2.8342	-1.5333	
H	3.3292	-0.0000	0.9086	H	6.1669	-1.1915	-0.1040	H	5.5625	-1.6516	-1.6067	
H	4.0674	0.0000	-0.6905	H	5.2392	0.2926	-1.8678	H	6.0053	0.2389	-0.0558	
H	2.8673	-2.1631	-0.2196	H	2.8505	0.9816	-1.7845	H	4.2725	0.9333	1.5842	
H	2.1828	-1.3261	-1.6084	C	-3.2687	0.3440	-1.0113	H	2.0982	-0.2763	1.6832	
H	0.3553	-2.1594	-0.1452	C	-4.6064	-0.0505	-1.0554					
H	1.0454	-1.3242	1.2428	C	-5.1255	-0.8874	-0.0642	G=-1018.617312				
						C	-4.3108	-1.3295	0.9808			

H	-4.6976	-0.0193	-2.4672	H	6.1733	1.2307	-0.8345	H	-2.8829	-1.2639	0.8851
H	-2.3107	-0.7277	-2.5212	H	-3.0471	-1.8290	-0.8623	C	5.3205	-0.6191	0.1147
C	2.9580	-1.0253	-1.7022	C	5.0500	-3.5460	1.0911	C	6.0726	-1.7943	0.0872
C	4.2988	-0.6386	-1.6697	C	4.7988	-4.9095	1.2498	C	5.8173	-2.7691	-0.8804
C	5.1281	-1.0636	-0.6291	C	3.6883	-5.4953	0.6372	C	4.8117	-2.5695	-1.8292
C	4.6185	-1.8767	0.3862	C	2.8271	-4.7198	-0.1426	C	4.0577	-1.3950	-1.8169
C	3.2778	-2.2632	0.3694	C	3.0723	-3.3567	-0.3161	H	5.5013	0.1395	0.8705
H	2.3108	-0.7278	-2.5213	H	5.9017	-3.0773	1.5750	H	6.8539	-1.9481	0.8250
H	4.6976	-0.0193	-2.4673	H	5.4688	-5.5107	1.8566	H	6.4053	-3.6816	-0.8980
H	6.1722	-0.7662	-0.6121	H	3.4972	-6.5565	0.7635	H	4.6213	-3.3208	-2.5895
H	5.2614	-2.2078	1.1958	H	1.9713	-5.1767	-0.6300	H	3.2918	-1.2148	-2.5648
H	2.8680	-2.8826	1.1617	H	2.4278	-2.7488	-0.9431	C	0.0602	3.5067	-1.5716
				C	3.5668	2.9353	-0.7357	C	-1.1891	4.1040	-1.3984
$\mathrm{G}=-1018.613782$				C	3.1422	4.2478	-0.5252	C	-1.8546	3.9987	-0.1747
				C	2.9903	4.7369	0.7745	C	-1.2694	3.3002	0.8842
				C	3.2684	3.9161	1.8700	C	-0.0163	2.7054	0.7260
				C	3.7016	2.6040	1.6726	H	0.5804	3.5706	-2.5227
				H	3.6763	2.5402	-1.7414	H	-1.6420	4.6475	-2.2219
				H	2.9268	4.8848	-1.3775	H	-2.8255	4.4667	-0.0442
				H	2.6605	5.7591	0.9334	H	-1.7787	3.2303	1.8405
				H	3.1633	4.2995	2.8804	H	0.4618	2.1843	1.5493
				H	3.9494	1.9654	2.5148				
								$\mathrm{G}=-1174.568440$			
				$\mathrm{G}=-1174.572117$							

1 0				TS				II + N_{2}			
C	-1.0604	-3.2012	2.3523	C	-1.3808	-4.1047	0.8473	C	1.3663	-4.6234	-0.5340
C	1.2964	3.6450	0.0731	C	1.4308	3.6692	0.1999	C	-2.0171	3.2622	-0.7206
C	-0.3469	-3.0709	1.2323	C	-0.7317	-3.1978	0.1011	C	0.5534	-3.5326	-0.5505
c	2.5293	3.0854	0.1659	C	2.5601	2.9287	0.3358	C	-3.1148	2.4686	-0.8322
C	-0.7945	-2.4044	-0.0470	C	-1.3531	-1.9783	-0.4560	C	1.0489	-2.1919	-0.5041
N	0.3911	2.6012	-0.0769	N	0.4010	2.7824	-0.0877	N	-0.9280	2.4199	-0.5570
N	-0.2748	-3.1032	-1.1446	N	-1.3756	-2.3103	-2.1856	N	-0.0658	-1.2903	3.5780
N	2.3555	1.7100	0.0712	N	2.1981	1.6040	0.1283	N	-2.6728	1.1582	-0.7334
C	1.0389	1.4064	-0.0680	C	0.8651	1.5042	-0.1228	C	-1.3207	1.1162	-0.5749
C	-2.2576	-2.1166	-0.4001	C	-2.8439	-1.7187	-0.3020	C	2.5102	-1.9834	-0.3313
H	0.6789	-3.4323	1.1998	H	0.3400	-3.2949	-0.0536	H	-0.5219	-3.6757	-0.6070
C	-1.0315	2.7827	-0.2064	C	-0.9651	3.1853	-0.2965	C	0.4261	2.8835	-0.4034
H	-0.6076	-3.6744	3.2177	H	-0.8380	-4.9230	1.3113	H	0.9601	-5.6307	-0.5765
C	3.4346	0.7577	0.1298	C	3.1238	0.5029	0.1861	C	-3.5408	0.0125	-0.8015
Au	0.1911	-0.4375	-0.1216	Au	-0.2261	-0.2139	-0.3587	Au	-0.1186	-0.5565	-0.5106
H	-2.0743	-2.8364	2.4534	H	-2.4419	-4.0372	1.0620	H	2.4478	-4.5379	-0.4711
N	0.1691	-3.6418	-2.0156	N	-1.1234	-2.4945	-3.2474	N	0.0896	-0.2350	3.2892
H	0.9807	4.6762	0.0696	H	1.2678	4.7341	0.2488	H	-1.9154	4.3359	-0.7092
0	-2.7064	-2.3039	-1.5083	O	-3.6063	-1.5686	-1.2320	O	2.9255	-1.8397	0.8033
H	3.5077	3.5291	0.2606	H	3.5815	3.2165	0.5284	H	-4.1600	2.7123	-0.9385
0	-2.9066	-1.6017	0.6398	O	-3.1483	-1.6063	0.9904	O	3.2081	-1.9400	-1.4555
C	-1.6855	2.3281	-1.3538	C	-1.6126	2.8519	-1.4884	C	1.1662	2.5021	0.7182
C	-4.3001	-1.2174	0.3951	C	-4.5234	-1.2009	1.2967	C	4.6315	-1.5944	-1.3374
C	-3.0621	2.5269	-1.4742	C	-2.9332	3.2606	-1.6812	C	2.4723	2.9743	0.8594
C	-4.8377	-0.6199	1.6785	C	-4.6569	-1.1577	2.8046	C	5.1960	-1.5224	-2.7404
C	-3.7688	3.1836	-0.4635	C	-3.5892	4.0063	-0.6991	C	3.0212	3.8273	-0.1007
H	-4.8461	-2.1120	0.0849	H	-5.2001	-1.9240	0.8341	H	5.1156	-2.3630	-0.7291
C	-3.1008	3.6405	0.6757	C	-2.9264	4.3432	0.4836	C	2.2659	4.2083	-1.2127
H	-4.3060	-0.5036	-0.4327	H	-4.6935	-0.2257	0.8321	H	4.6989	-0.6411	-0.8062
C	-1.7265	3.4395	0.8113	C	-1.6101	3.9306	0.6928	C	0.9633	3.7350	-1.3715
H	-4.2686	0.2693	1.9671	H	-3.9568	-0.4397	3.2427	H	4.6869	-0.7549	-3.3311

H	-1.1215	1.8461	-2.1459	H	-1.0826	2.2994	-2.2574	H	0.7213	1.8657	1.4762
H	-4.8039	-1.3428	2.4994	H	-4.4722	-2.1413	3.2474	H	5.0987	-2.4829	-3.2555
H	-3.5753	2.1860	-2.3684	H	-3.4419	3.0079	-2.6064	H	3.0521	2.6863	1.7310
H	-5.8820	-0.3266	1.5282	H	-5.6745	-0.8508	3.0679	H	6.2598	-1.2680	-2.6884
H	-4.8370	3.3486	-0.5677	H	-4.6133	4.3300	-0.8579	H	4.0339	4.2000	0.0199
H	-3.6473	4.1529	1.4615	H	-3.4338	4.9230	1.2486	H	2.6903	4.8699	-1.9616
H	-1.2003	3.7773	1.6991	H	-1.0932	4.1709	1.6172	H	0.3758	4.0091	-2.2428
c	4.2316	0.7061	1.2749	C	3.8226	0.2644	1.3711	C	-4.3546	-0.1575	-1.9234
c	5.2940	-0.1975	1.3223	C	4.7427	-0.7836	1.4185	C	-5.2147	-1.2548	-1.9793
c	5.5495	-1.0393	0.2371	C	4.9554	-1.5836	0.2931	C	-5.2542	-2.1715	-0.9259
c	4.7454	-0.9764	-0.9036	C	4.2507	-1.3342	-0.8870	C	-4.4360	-1.9897	0.1916
c	3.6847	-0.0712	-0.9662	C	3.3336	-0.2837	-0.9489	C	-3.5777	-0.8913	0.2630
H	4.0149	1.3546	2.1186	H	3.6388	0.8829	2.2446	H	-4.3034	0.5503	-2.7454
H	5.9179	-0.2450	2.2095	H	5.2891	-0.9758	2.3367	H	-5.8490	-1.3943	-2.8492
H	6.3788	-1.7390	0.2777	H	5.6745	-2.3961	0.3340	H	-5.9270	-3.0225	-0.9731
H	4.9527	-1.6190	-1.7539	H	4.4265	-1.9449	-1.7674	H	-4.4773	-2.6917	1.0190
H	3.0707	0.0095	-1.8577	H	2.8027	-0.0585	-1.8685	H	-2.9608	-0.7215	1.1396
$\mathrm{G}=-1316.628004$					621563 $8 i \mathrm{~cm}^{-1}$			$\mathrm{G}=-1316.661061$			

10. References

1. a) A. Padwa, Y. S. Kulkarni and Z. Zhang, J. Org. Chem. 1990, 55, 4144; b) H. M. L. Davies, P. W. Hougland and W. R. Cantrell Jr., Synth. Commun. 1992, 22, 971; c) M. P. Doyle, M. Yan, W. Hu and L. Gronenberg, L. J. Am. Chem. Soc. 2003, 125, 4692; d) C. Peng, J. Cheng, and J. Wang, J. Am. Chem. Soc. 2007, 129, 8708.
2. a) M. S. Baird, A. V. Nizoutsev and I. G. Bolesov, Tetrahedron, 2002, 58, 1581; b) T. Jiro, S. Teuro and M. Ichiro, Synthesis, 1987, 603.
3. J.-L. Moreau and M. Gaudemar, J. Organomet. Chem. 1976, 108, 159.
4. P. de Frémont, N. Marion and S. P. Nolan, J. Organomet. Chem. 2009, 694, 551.
5. For a detailed presentation of the theoretical methods, see: F. Jensen, Introduction to Computational Chemistry, $2^{\text {nd }}$ edition, Wiley 2007.
6. Gaussian 09, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. J.; Burant, C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J. and Fox, D. J. Gaussian, Inc., Wallingford CT, 2010.
7. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra for new compounds

3a

EL-155car

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

3b

EL-262

EL-262
亳

3c

EL-260f1
$\stackrel{\text { ? }}{\stackrel{2}{3}}$

$\stackrel{\text { \% }}{8}$

3d

EL-279f2p

EL-279f2

3 e

EL-251f2

1

鮦

EL-251f2
|

$3 f$

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	

3g

EL-356f3_1h

EL-356f2

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	ppm

3h

EL-350f3

GL-1083f3

gl1083f3 C13 CPD DPX300

3j

EL-27012

EL-270f2
$\left.\right|^{\text {on }}$
$\left.\right|_{\mid} ^{8}$

$\begin{array}{llllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

3k

EL-27112

EL-271f2

|

EL-335f3f2

$3 m$

GL-1088F2

NOESY experiment ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound $\mathbf{3 m}$

3n

EL-340f1_600

30

EL-261f1

3p

EL-284f2_1

EL-284f2

[^0]
$3 p^{\prime}$

NOESY experiment ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for compound $3 \boldsymbol{p}^{\prime}$

$3 q$

EL-283f5f1

EL-283f5f

$3 q^{\prime}$

EL-283F2

$3 r$

EL-352F1

EL-352f1

3s

EL-231F3

3t

EL-196ł3

シige

EL-196ł3

$3 u$

$3 u^{\prime}$

EL-1078f1

4a

GL-1081f3

[^1]

4b

EL-412F2_1H

EL-412f2

$\left.\right|^{\text {高 }}$

$\begin{array}{llllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20\end{array}$

4c

EL-254f2

EL-443ז2

[^0]: $\begin{array}{llllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & \mathrm{ppm}\end{array}$

[^1]: $\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$

