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S1. Materials and methods

2,3,4,6-Tetra-O-acetyl-a-D-glucopyranosyl fluoride (98%) and a-D-glucose
pentaacetate (98%) were obtained from Aladdin Reagent Company (Shanghai). N-
(Trimethylsilyl)bis(trifluoromethanesulfonyl)imide (TMSNTY,, 95%) was purchased
from Tokyo Chemical Industry Co., Ltd. 1,2,3,4,5,6,7,8-Octafluoro-9,10-bis[4-
(trifluoromethyl)phenyl]anthracene (97%) was purchased from Sigma Aldrich. 1,3,5-
Tris(trifluoromethyl)benzene  (98%),  trimethylsilyl  trifluoromethanesulfonate
(TMSOTHT, 99%), boron trifluoride diethyl etherate (BF5;-OEt,, 48% BF3), methanol
(99.5%), dichloromethane-d2 (CD,Cl,, 99.9 atom% D) were supplied by J&K

Scientific Ltd. All chemicals were used without further purification.

2-O-benzyl-3,4,6-tri-O-acetyl o-D-glucopyranosyl trichloroacetimidate 1 was

synthesized.!

'H NMR (400 MHz, CD,Cl,) & 'H NMR (500 MHz, Chloroform-d) & 8.74 (s, 1 H,
NH); 7.35-7.28 (m, 5 H, Ar); 6.50 (d, J= 3.7 Hz, 1 H, H-1); 5.45 (dd, J=9.7, 10.0 Hz,
1 H, H-3); 5.05 (dd, J = 9.7, 10.0 Hz, 1 H, H-4); 4.68 (d, J= 12.1 Hz, 1 H, Bn); 4.60
(d, J=12.1 Hz, 1 H, Bn); 4.22-4.15 (m, 2 H, H-5, H-6a); 4.08 (bd, J = 10.4 Hz, 1-H,
H-6b); 3.80 (dd, J=3.7, 9.7 Hz, 1 H, H-2); 2.02 (s, 3 H, Ac); 2.01 (s, 3 H, Ac); 1.99
(s, 3 H, Ac)

13C NMR (100 MHz, CD,Cl,) § 170.9 (Ac), 170.4 (Ac), 170.1 (Ac), 161.4 (C=N),
129.0, 128.6, 128.3, 126.7 (6 C, Ar), 93.9 (C-1), 76.5 (C-2), 73.5 (Bn), 71.9 (C-3),

70.6 (C-5), 68.5 (C-4), 62.1 (C-6), 21.2 (Ac), 21.0 (2xAc).



NMR spectra were acquired on a Bruker AV-III 400 MHz NMR spectrometer
(9.39 T), using a 5 mm PABBO BB/19F-1H/D probe with z gradient coil producing a
maximum gradient strength of 0.50 T m™!. The “doped water (GdCl; in D,0)” was
used as a standard for the gradient strength calibration. The temperature was
calibrated using the NMR temperature standards according to the manuals of Bruker

(4% CH30H in CD;0D for low temperature).

All used compounds have been measured in 0.04 M solutions of analyte and
reference (in an equimolar ratio) in 400 uL CD,Cl, for NMR measurement. 'H NMR
was obtained at frequencies of 400.13 MHz; °F NMR was obtained at frequencies of
376.47 MHz. Using the chemical shift of the CD,Cl, as a reference for 'H and 3C
NMR (at 5.32, 54 ppm). Using the chemical shift of 1,3,5-

tris(trifluoromethyl)benzene signal (at -60.25 ppm) as the reference for '°F NMR.?

DOSY experiments were performed with the Bruker standard bipolar pulse
longitudinal eddy current delay (ledbpgp2s) pulse sequence. All the DOSY
measurements were performed at -55 °C without sample spinning. For each DOSY-
NMR experiment, 16 BPPLED spectra with 32K date points were collected. The
diffusion time (A) was 100 ms. The duration of the pulse field gradient (8/2) was
adjusted in a range of 600~2000 ps in order to obtain 2%~5% residual signal with the
maximum gradient strength. The delay for gradient recovery was 0.2 ms and the eddy
current delay was 5 ms. The gradient strength was incremented in 16 steps from 2% to

95% of its maximum value in a linear ramp. After Fourier transformation and baseline



correction, the diffusion dimension was processed using Bruker Topspin 3.1 software
and the diffusion coefficients were calculated by Dynamics center 2.2.4. The diffusion
coefficients of the compounds in CD,Cl, were normalized to the 1,3,5-

tris(trifluoromethyl)benzene signal with a fixed value of log Dyt iy = -9.1573.



S2. Spectra of donor 1 (2-O-benzyl-3,4,6-tri-O-acetyl a-D-glucopyranosyl trichloroacetimidate)

Figure S1. "H NMR spectrum of donor
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'H NMR (400 MHz, CD,Cl,) 6 *H NMR (500 MHz, Chloroform-d) & 8.74 (s, 1 H, NH); 7.35-7.28 (m, 5H, Ar); 6.50 (d, J = 3.7 Hz, 1H, H-1); 5.45 (dd, J = 9.7, 10.0 Hz, 1H, H-3); 5.05
(dd, J=9.7,10.0 Hz, 1H, H-4); 4.68 (d, J = 12.1 Hz, 1H, Bn); 4.60 (d, J = 12.1 Hz, 1H, Bn); 4.22-4.15 (m, 2H, H-5, H-6a); 4.08 (bd, J = 10.4 Hz, 1H, H-6b); 3.80 (dd, J = 3.7, 9.7 Hz,
1H, H-2); 2.02 (s, 3H, Ac); 2.01 (s, 3 H, Ac); 1.99 (s, 3 H, Ac)



Figure S2. 13C DEPT135 spectrum of donor 1
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Figure S3. 13C NMR spectrum of donor 1
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(C-4), 62.1 (C-6), 21.2 (Ac), 21.0 (2xAc).




Figure S4. COSY spectrum of donor 1
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Figure S5. HSQC spectrum of donor 1
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S3. Decomposition studies of donor 1 with TMSOTT
Figure S6. 'TH NMR spectrum of glycosylation reactions catalyzed by TMSOTT at -55 °C
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Figure S7. COSY spectrum of glycosylation reactions catalyzed by TMSOTT at -55 °C
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Figure S8. 13C DEPT135 spectrum of glycosylation reactions catalyzed by TMSOTT at -55 °C
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Figure S9. HSQC spectrum of glycosylation reactions catalyzed by TMSOTT at -55 °C
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Figure S10. 3C NMR spectrum of glycosylation reactions catalyzed by TMSOT(f at -55 °C
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Figure S11. 'TH DOSY and '°F DOSY spectra of glycosylation reactions catalyzed by TMSOTf at -55 °C
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Figure S12. 'TH NMR spectra of glycosylation reactions catalyzed by TMSOTT from -55 °C to 5 °C
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S4. Decomposition studies of donor with BF;*OEt,

Figure S13. 'TH NMR spectrum of glycosylation reactions catalyzed by BF;-OEt, at -55 °C
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Figure S14. F NMR spectrum of glycosylation reactions catalyzed by BF;-OEt, at -55 °C
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Figure S15. HSQC spectrum of glycosylation reactions catalyzed by BF3-OEt, at -55 °C
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Figure S16. 13C NMR spectrum of glycosylation reactions catalyzed by BF;-OEt, at -55 °C
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Figure S17. "B NMR spectrum of glycosylation reactions catalyzed by BF;-OEt, at -55 °C. Using the chemical shift of the BF;-OEt, as a

reference (0 ppm). The peak at -1.21 ppm is characteristic for a B-O or B-N complex.
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Figure S18. 'TH DOSY and '°F DOSY spectra of glycosylation reactions catalyzed by BF;-OEt, at -55 °C
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Figure S19. 'TH NMR spectra of glycosylation reactions catalyzed by BF3-OEt, from -55 °C to -15 °C
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Figure S20. COSY spectrum of glycosylation reactions catalyzed by BF3-OFEt, at -15 °C
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Figure S21. 13C DEPT135 spectrum of glycosylation reactions catalyzed by BF3-OEt; at -15 °C

21.01

20.94

— 54.00 CD2CI2
21.19
21.10

~ 103.94

— 13.50

/
\

Bn

140 180 120 110 100 90 80 70 60 50 40 30 20 10
ppm




Figure S22. HSQC spectrum of glycosylation reactions catalyzed by BF;-OEt, at -15 °C
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Figure S23. F NMR spectrum of glycosylation reactions catalyzed by BF;-OEt, at -15 °C
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Figure S24. 'TH NMR spectra of glycosylation reactions catalyzed by BF;-OEt, at -15 °C and recooling to -55 °C
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S5. Decomposition studies of donor with TMSNTT,

Figure S25. 'TH NMR spectra of TMSNTT; in CD,Cl, at -55 °C
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Figure S26. '°F NMR spectra of TMSNTT, in CD,Cl, at -55 °C
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Figure S27. 'TH NMR spectra of glycosylation reactions catalyzed by TMSNTT, from 0 min to 30 min at -55 °C
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Figure S28. 'TH NMR spectrum of glycosylation reactions catalyzed by TMSNTT; at -55 °C
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Figure S29. COSY spectrum of glycosylation reactions catalyzed by TMSNTT; at -55 °C
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Figure S30. 13C DEPT135 spectrum of glycosylation reactions catalyzed by TMSNTT; at -55 °C
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Figure S31. HSQC spectrum of glycosylation reactions catalyzed by TMSNTT; at -55 °C
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Figure S32. F NMR spectrum of glycosylation reactions catalyzed by TMSNTT; at -55 °C
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Figure S33. NOESY spectrum of glycosylation reactions catalyzed by TMSNTY, at -55 °C
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Figure S34. 'TH DOSY and °F DOSY spectra of glycosylation reactions catalyzed by TMSNTT,
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Figure S35. F NMR spectra of glycosylation reactions catalyzed by TMSNTT, from -55 °C to 15 °C
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Figure S36. COSY spectrum of glycosylation reactions catalyzed by TMSNTT; at -5 °C
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Figure S37. 3C NMR spectrum of glycosylation reactions catalyzed by TMSNTT; at -5 °C
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Figure S38. HSQC spectrum of glycosylation reactions catalyzed by TMSNTT; at -5 °C
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6. Molecular Weight Determination of the intermediates via DOSY by using External Calibration Curves

Figure S39. Overview of the used compounds (S1-S8) for calibration curves and the internal reference.
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Table S1. The compounds for calibration curves by *H DOSY NMR and their normalized diffusion coefficients log Dy norm

Analyte log MW log Dyt log Dy log Dy norm error
S1 1.8699 -9.0580 -9.0269 -9.1225 1.37E-02
S2 2.1521 -9.0580 -9.0872 -9.1829 1.87E-02
S3 2.5914 -9.1073 -9.2343 -9.2806 2.23E-02
S4 2.7330 -9.1284 -9.2790 -9.3043 2.26E-02
S5 2.7856 -9.2823 -9.4510 -9.3223 1.74E-02
S7 3.0885 -9.2328 -9.4685 -9.3893 3.25E-02

log Dy norm = 10g Dyt fix - 10g Drert log Dy; the 1,3,5-tris(trifluoromethyl)benzene was used as the internal reference with log Dyessix = -9.1573. All

compounds have been measured in 0.04 M solutions of analyte and 1,3,5-tris(trifluoromethyl)benzene in an equimolar ratio.
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Table S2. The compounds for calibration curves by '’F DOSY NMR and their normalized diffusion coefficients 10g Dy norm,

Analyte log MW log Dt log Dy log Dy norm error
S6 1.8313 -9.1878 -9.1296 -9.0955 7.17E-03
S2 2.1521 -9.1878 -9.2161 -9.1820 1.78E-02
S8 2.5444 -9.1643 -9.2725 -9.2618 2.58E-02
S5 2.7856 -9.3170 -9.5072 -9.3439 1.26E-02

log Dy norm = 10g Dyt fix - l0g Drert log Dy; the 1,3,5-tris(trifluoromethyl)benzene was used as the internal reference with log Dyef fix =
compounds have been measured in 0.04 M solutions of analyte and 1,3,5-tris(trifluoromethyl)benzene in an equimolar ratio.

-9.1573. All
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Figure S40. log D versus log MW in CD,Cl, by 'H DOSY NMR. All compounds

were normalized to log D4, = -9.1537.
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Figure S41. log D versus log MW in CD,Cl, by °F DOSY NMR. All compounds

were normalized to log D4, = -9.1537.
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