Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2016

Substrate-Controlled Switchable Asymmetric Annulations to Access Polyheterocyclic Skeletons

Kai-Kai Wang, ac Pan Wang, a Qin Ouyang, *b Wei Dua and Ying-Chun Chen*ab

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China

^cChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China

E-mail: ouyangq@tmmu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

Table of Contents

- 1. General methods
- 2. Preparation of α-cyano-α,β-unsaturated ketones
- 3. Screening conditions of asymmetric domino reaction
- 4. Screening conditions of asymmetric [3+2] annulation
- 5. Exploration of other α , β -unsaturated ketones
- 6. General procedure for asymmetric domino reactions
- 7. General procedure for asymmetric [3 + 2] annulations
- 8. Crystal data and structural refinement for enantiopure 3t and 5a
- 9. DFT computational calculation studies
- 10. NMR spectra and HPLC chromatograms

1. General methods

NMR data were obtained for ¹H at 400 MHz MHz or 600 MHz, and for ¹³C at 100 MHz or 150 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. In each case, enantiomeric ratio was determined by HPLC analysis on a chiral column in comparison with authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak OD-H Column (250 × 4.6 mm), Chiralpak IA Column (250 × 4.6 mm), Chiralpak IB Column (250 × 4.6 mm) or Chiralpak IC Column (250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was measured in CHCl₃ solution at 20 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate/petroleum ether. TLC was performed on glass-backed silica plates. UV light, I2, and solution of potassium permanganate were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and ethyl acetate were distilled. THF was freshly distilled from sodium/benzophenone. Unless otherwise noted, experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes. Morita-Baylis-Hillman carbonates were prepared according to the literature procedures.¹Cinchona-derived catalysts β -isocupreidine C1 (β -ICD), α -isocupreine C2 (α -IC), C3 and C4 were prepared according to the literature procedures.²

(1) (*a*) Y. M. Chung, Y. J. Im and J. N. Kim, *Bull. Korean Chem. Soc.*, 2002, **23**, 1651; (*b*) K. Selvakumar, K. A. P. Lingam and R. V. L. Varma, *RSC Adv.*, 2014, **4**, 36538.

(2) (a) Y. Iwabuchi, M. Nakatani, N. Yokoyama and S. Hatakeyama, J. Am. Chem. Soc., 1999, 121, 10219;
(b) H. Waldmann, V. Khedkar, H. Dückert, M. Schürmann, I. M. Oppel and K. Kumar, Angew. Chem., Int. Ed., 2008, 47, 6869; (c) Y. Nakamoto, F. Urabe, K. Takahashi, J. Ishihara and S. Hatakeyama, Chem. Eur. J., 2013, 19, 12653.

2. Preparation of α-cyano-α,β-unsaturated ketones

 α -Cyano- α , β -unsaturated ketones were prepared according to the literature procedures.³

A dry and nitrogen-flushed 150 mL three-neck flask equipped with a magnetic stirring bar was charged with a solution of sodium hydride (60%) (1.5 equiv) and ester (64 mmol) in dry toluene (100 mL). The reaction mixture was stirred at 90 °C, and acetonitrile (8.0 mL) was added dropwise in 1 h. Then, the mixture was stirred at 90 °C for 6 h. Saturated NH₄Cl (10 mL) and water (70 mL) were added at 0 °C to quench the

reaction. The suspension was extracted with ethyl acetate (3×100 mL). The solvent was evaporated and the crude mixture was recrystallized to obtain the 3-oxo-3-propanenitrile as a yellow solid.

A dry 50 mL round flask equipped with a magnetic stirring bar was charged with a solution of 3-oxo-3propanenitrile (6.0 mmol), aldehyde (6.0 mmol), piperidine (0.2 equiv) and acetic acid (0.2 equiv) in toluene (20 mL). The mixture was heated at 60 °C for 12 h. After cooling to room temperature, the mixture was washed with water (10 mL) and the aqueous phase was extracted with ethyl acetate (3×10 mL). The solvent was evaporated and the crude mixture was subjected to column chromatography (PE/EA=10:1) to obtain the corresponding α -cyano- α , β -unsaturated ketone **2**.

(3) (*a*) P. K. Amancha, Y.-C. Lai, I.-C. Chen, H.-J. Liu and J.-L. Zhu, *Tetrahedron*, 2010, **66**, 871; (*b*) W. Liu, J. Zhou, C. Zheng, X. Chen, H. Xiao, Y. Yang, Y. Guo and G. Zhao, *Tetrahedron*, 2011, **67**, 1768.

A few new substates 2:

(*E*)-2-(1-Naphthoyl)-3-phenylacrylonitrile: ¹H NMR (400 MHz, CDCl₃) δ 8.16–8.14 (m, 1H), 8.06 (d, *J* = 8.0 Hz, 1H), 8.02–7.99 (m, 3H), 7.95–7.93 (m, 1H), 7.74 (d, *J* = 7.2 Hz, 1H), 7.60–7.54 (m, 4H), 7.50 (t, *J* = 7.6 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 191.1, 156.0, 133.74, 133.70, 133.6, 132.5, 131.5, 131.2, 130.4, 129.3, 128.6, 127.9, 127.6, 126.8, 124.9, 124.2, 116.3, 112.4 ppm; ESI-HRMS: calcd. for C₂₀H₁₃NO+Na⁺ 306.0889, found 306.0892.

 $(E)-2-(2-Naphthoyl)-3-phenylacrylonitrile: ¹H NMR (400 MHz, CDCl₃) \delta 8.45 (s, 1H), 8.11 (s, 1H), 8.05 (d,$ *J*= 7.2 Hz, 2H), 7.99–7.90 (m, 4H), 7.64 (t,*J*= 7.2 Hz, 1H), 7.59 (t,*J*= 7.2 Hz, 2H), 7.53 (t,*J* $= 7.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) \delta 188.8, 155.4, 135.6, 133.3, 133.0, 132.2, 131.9, 131.2, 131.1, 129.6, 129.3, 128.9, 128.7, 127.9, 127.1, 124.8, 128.9, 128.7, 127.9, 128.9, 128.7, 127.9, 128.9, 128.7, 127.9, 128.9, 128.7, 128.9, 128.7, 127.9, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.7, 128.9, 128.9, 128.9, 128.7, 128.9,$

116.9, 110.3 ppm; ESI-HRMS: calcd. for $C_{20}H_{13}NO+Na^+$ 306.0889, found 306.0890.

(*E*)-2-Benzylidene-4,4,4-trifluoro-3-oxobutanenitrile: ¹H NMR (400 MHz, CDCl₃) δ 8.37 F₃C Ph (s, 1H), 8.12 (d, *J* = 7.6 Hz, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 2H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 175.8 (q, *J* = 73.7Hz), 159.2 (d, *J* = 0.9 Hz), 135.5, 132.4, 130.9, 129.7, 115.8 (q, *J* = 289.7 Hz), 113.8, 103.5 ppm; ESI-HRMS: calcd. for C₁₁H₆F₃NO+Na⁺ 248.0294, found 248.0296.

3. Screening conditions of asymmetric domino annulation^{*a*}

-

entry	catalyst	solvent	<i>t</i> (h)	yield/% ^b	ee/% ^c
1	DABCO	CH ₂ Cl ₂	12	95	-
2	Ph ₃ P	CH_2Cl_2	24	\mathbf{NR}^{d}	-
3	<i>n</i> Bu ₃ P	CH_2Cl_2	24	\mathbf{NR}^{d}	-
4	C1	CH_2Cl_2	12	87	99
5	C2	CH_2Cl_2	24	80	-98^{e}
6	C3	CH_2Cl_2	12	92	70
7	C4	CH_2Cl_2	12	85	73
8	C1	DCE	12	91	95
9	C1	CHCl ₃	12	89	86
10	C1	toluene	12	92	93
11	C1	THF	12	<5	_
12	C1	CH ₃ CN	12	76	91
13	C1	Et ₂ O	12	70	94
14	C1	EtOAc	12	92	95
15 ^f	C1	CH_2Cl_2	18	85	84

16^{g} C1 CH ₂ Cl ₂ 30 78	16^{g}	C1	CH_2Cl_2	30	78	
--	----------	----	------------	----	----	--

^{*a*} Unless noted otherwise, reactions were performed with α -cyano- α , β -unsaturated ketones **2a** (0.1 mmol) and MBH carbonate **1a** (0.1 mmol), catalyst **C** (10 mol%) in solvent (1.0 mL) at room temperature. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase; d.r. >19:1 by ¹H NMR analysis. ^{*d*} No reaction. ^{*e*} Performed at 0 °C. ^{*f*} With 5 mol% of **C1**. ^{*s*} With 2 mol% of **C1**.

77

The initial reaction of MBH carbonate **1a** and α -cyano- α , β -unsaturated ketones **2a** proceeded efficiently at room temperature in the presence of DABCO (10 mol%). An unusual [2+1] domino annulationrearrangement product **3a** was cleanly obtained in a high yield after 12 h (entry 1). The reaction exhibited exclusive diastereoselectivity, and the common [3+2] or [4+1] annulation product was not observed. Ph₃P and *n*Bu₃P showed much lower catalytic activity (entries 2 and 3). Consequently, we investigated the asymmetric domino reaction under the catalysis of chiral tertiary amines. β -isocupreidine **C1** (β -ICD, 10 mol%) was found to be highly efficient in the reaction of MBH carbonate **1a** and α -cyano- α , β -unsaturated ketone **2a** in CH₂Cl₂ at ambient temperature, affording the desired domino product **3a** in a high yield with enantiomerical purity (entry 4). α -Isocupreine **C2** (α -IC) also showed high catalytic activity and opposite enantioselectivity to that of β -ICD (entry 5). Chiral amines **C3** and **C4** without a free OH group delivered moderate enantioselectivity (entries 6 and 7). CH₂Cl₂ was the optimal solvent after further investigation (entries 8–14). The reaction still proceeded well with 5 mol% and 2 mol% of **C1**, albeit with the decreased enantioselectivity (entries 15 and 16).

4. Screening conditions of asymmetric [3+2] annulation^a

4	ⁿ Bu ₃ P	CH_2Cl_2	24	rt	\mathbf{NR}^{d}	_
5	C1	CH_2Cl_2	12	0	95	66
6	C2	CH_2Cl_2	12	0	94	30
7	C1	CH_2Cl_2	24	-20	92	75
8	C2	CH_2Cl_2	24	-20	91	37
9	C3	CH_2Cl_2	24	-20	92	86
10	C4	CH_2Cl_2	24	-20	90	85
11	C3	CHCl ₃	24	-20	87	63
12	C3	DCE	24	-20	93	92
13	C3	CH ₃ CN	24	-20	91	90
14	C3	THF	24	-20	91	92
15	C3	dioxane/CH ₂ Cl ₂ (5:1)	24	-20	88	90
16	C3	toluene	24	-20	71	83
17	C3	EtOAc	24	-20	89	89
18	C3	Et ₂ O	24	-20	NR ^[d]	_
19	C3	DCE	36	-30	92	91
20	C3	THF	36	-30	91	92

^{*a*} Unless noted otherwise, reactions were performed with α -cyano- α , β -unsaturated ketones **2b** (0.1 mmol) and MBH carbonate **4** (0.1 mmol), catalyst **C** (10 mol%) in solvent (1.0 mL). ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase; d.r. >19:1 by ¹H NMR analysis. ^{*d*} No reaction.

To explore the catalytic asymmetric version of [3+2] annulation between α -cyano- α , β -unsaturated ketone **2b** and MBH carbonate **4** from isatin and acrylonitrile, more conditions were screened. In the model reaction in CH₂Cl₂ at 0 °C catalyzed by DABCO and DMAP, the reaction could smoothly afford the desired [3+2] product **5a** with excellent α -regioselective and diastereoselectivity (entries 1 and 2). Unfortunately, when phosphine catalysts was used, no reaction took place (entries 3 and 4). When **C1** or **C2** was used, the reaction could smoothly afford the desired [3+2] product **5a** while the enantioselectivity was low to moderate (entries 5–8). Chiral amines **C3** and **C4** without a free OH group delivered better enantioselectivity (entries 9 and 10). To further enhance the stereoselectivity, we continued optimizing a number of reaction parameters. Solvent screening revealed that DCE was the best solvent (entries 11–18). Lowering the reaction temperature did not offer further improvement (entries 19 and 20).

5. Exploration of other α , β -unsaturated ketones

More α,β -unsaturated ketones with different substitutions at α or β site were tested in the domino annulation reaction and [3+2] annulation reaction. Nevertheless, The reaction hardly proceeded when R² is an alkyl group, 2-styryl group or CF₃. Notably, the cyano group at the α -position of enone **2a** was essential for the reaction. When it was replaced by H, NO₂ or CO₂Me, basically no reaction took place. Moreover, the tertrasubstituted alkene (R⁴ = Me) failed to give the corresponding products, probably because of the crowded structures. When R¹ is a CF₃ group, unfortunately, no reaction was observed.

6. General procedure for asymmetric domino annulations

The Morita-Baylis-Hillman (MBH) carbonate **1** (0.1 mmol), α -cyano- α , β -unsaturated ketones **2** (0.1 mmol), and catalyst **C1** or **C2** (3.1 mg, 0.01 mmol) were dissolved in CH₂Cl₂ (1.0 mL). Then the solution was stirred at rt or 0 °C. After completion, the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate (10:1 to 5:1) to afford the product **3**.

3a, 40.2 mg, 87% yield, white solid; $[\alpha]_{D}^{20} = -165.9$ (c = 1.20 in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.37 min, t (minor) = 6.81 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.13 (d, J = 7.2 Hz, 2H), 7.67–7.63 (m, 3H), 7.58–7.56 (m, 3H), 7.54–7.47 (m, 3H),

7.26–7.22 (m, 3H), 4.99 (d, J = 10.8 Hz, 1H), 4.07 (d, J = 10.8 Hz, 1H), 3.80 (s, 3H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.0, 169.8, 152.1, 135.3, 132.7, 132.1, 130.2, 129.0, 128.7, 128.4, 127.8, 127.5, 124.0, 121.1, 121.0, 117.7, 115.8, 108.8, 86.2, 83.6, 83.1, 79.7, 53.3, 51.1, 27.7; ESI-HRMS: calcd. for C₂₉H₂₂N₂O₄+Na⁺ 485.1472, found 485.1477.

Enantiomer of **3a**, 37.0 mg, 80% yield, white solid; $[\alpha]_{D}^{20} = +165.0$ (c = 1.20 in CHCl₃); -98% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.91 min, t (major) = 7.73 min

3b, 45.2 mg, 95% yield, white solid; $[\alpha]_{D}^{20} = -89.6$ (c = 0.24 in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.12 min, t (minor) = 9.24 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.14 (d, J = 7.2 Hz, 2H), 7.64–7.62 (m, 2H), 7.57–7.56 (m, 3H), 7.54–7.48 (m,

3H), 7.43 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 4.97 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.80 (s, 3H), 3.59 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.0, 169.9, 152.0, 135.4, 132.1, 130.9, 130.4, 130.1, 129.0, 128.7, 128.4, 127.8, 127.5, 124.1, 122.2, 117.7, 115.8, 108.5, 86.3, 83.1, 83.0, 79.7, 53.2, 51.1, 27.7, 21.6; ESI-HRMS: calcd. for C₃₀H₂₄N₂O₄+Na⁺ 499.1628, found 499.1631.

Ph **3c**, 44.3 mg, 90% yield, white solid; $[\alpha]_{D}^{20} = -285.9$ (c = 1.00 in CHCl₃); > 99% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.83 min, t (minor) = 7.07 min]; ¹H NMR (400 MHz, CDCl₃) **3c** δ (ppm) 8.10 (d, J = 6.8 Hz, 2H), 7.62–7.61 (m, 2H), 7.56–7.54 (m, 3H), 7.53–7.46

(m, 3H), 7.15–7.13 (m, 2H), 6.84 (dd, J = 8.8, 2.4 Hz, 1H), 4.96 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.90 (s, 3H), 3.79 (s, 3H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.0, 169.9, 155.2, 152.4, 135.3, 132.1, 130.2, 129.0, 128.7, 128.4, 127.8, 127.6, 127.5, 124.7, 115.8, 109.5, 109.3, 101.5, 86.3, 83.5, 83.0, 79.8, 56.0, 53.3, 51.1, 27.8; ESI-HRMS: calcd. for C₃₀H₂₄N₂O₅+Na⁺ 515.1577, found 515.1578.

3d, 43.2 mg, 90% yield, white solid; $[\alpha]_{D}^{20} = -267.0$ (c = 0.90 in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, λ = 254 nm, t (major) = 5.40 min, t (minor) = 6.34 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 7.2 Hz, 2H), 7.60 (s, 2H), 7.56–7.54 (m, 3H), 7.53–7.47 (m, 3H),

7.32 (dd, J = 9.2, 1.6 Hz, 1H), 7.15 (dd, J = 8.8, 4.4 Hz, 1H), 6.96–6.91 (m, 1H), 4.97 (d, J = 10.8 Hz, 1H), 4.06 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.8, 169.8, 158.8 (d, J = 234.2 Hz), 153.0, 135.1, 132.2, 130.3, 129.1 (d, J = 3.0 Hz), 128.8, 128.4, 127.8, 127.4, 124.6 (d, J = 10.7 Hz), 115.7, 109.5 (d, J = 9.7 Hz), 108.6 (d, J = 25.5 Hz), 103.7 (d, J = 25.2 Hz), 85.9, 84.0 (d, J = 4.0 Hz), 83.2, 79.8, 53.4, 51.0, 27.9; ESI-HRMS: calcd. for C₂₉H₂₁FN₂O₄+Na⁺ 503.1378, found 503.1377.

3d

3e, 45.1 mg, 91% yield, white solid; $[\alpha]_{D}^{20} = -186.7$ (c = 0.36 in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.07 min, t (minor) = 7.75 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 7.2 Hz, 2H), 7.60 (d, J = 3.6 Hz, 3H), 7.56–7.55 (m, 3H), 7.54–7.47

(m, 3H), 7.18–7.13 (m, 2H), 4.96 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.8, 169.8, 152.8, 135.0, 132.3, 131.1, 130.3, 129.1, 128.8, 128.4, 127.8, 127.4, 126.8, 125.1, 121.2, 117.4, 115.7, 109.9, 85.8, 83.7, 83.3, 79.7, 53.4, 51.1, 27.9; ESI-HRMS: calcd. for C₂₉H₂₁ClN₂O₄+Na⁺ 519.1082, found 519.1086.

7.56–7.54 (m, 3H), 7.52–7.47 (m, 3H), 7.30 (dd, J = 8.8, 1.6 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 4.96 (d, J = 10.8 Hz, 1H), 4.05 (d, J = 11.2 Hz, 1H), 3.81 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.8, 169.8, 152.7, 135.0, 132.3, 131.4, 130.3, 129.1, 128.8, 128.4, 127.9, 127.3, 125.7, 123.8, 120.4, 115.7, 114.4, 110.3, 85.7, 83.6, 83.3, 79.7, 53.5, 51.0, 27.9; ESI-HRMS: calcd. for C₂₉H₂₁BrN₂O₄+Na⁺ 563.0577(⁷⁹Br) and 565.0556(⁸¹Br), found 563.0582, 565.0562.

Enantiomer of **3f**, 48.6 mg, 90% yield, white solid; $[\alpha]_D^{20} = +104.2$ (c = 1.00 in CHCl₃); -97% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.62 min, t (major) = 7.09 min.

3g, 42.2 mg, 88% yield, white solid; $[\alpha]_{D}^{20} = -221.8$ (c = 1.20 in CHCl₃); 97% ee, **4** determined by HPLC analysis [Chiralpak IC, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.86 min, t (minor) = 7.81 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, J = 7.6 Hz, 2H), 7.62–7.61 (m, 2H), 7.57–7.55 (m, 3H), 7.54–7.47 (m, 3H), 7.37 (d, J = 7.6 Hz, 1H), 7.10–7.05 (m, 1H), 6.89 (dd, J = 12.4, 8.4 Hz, 1H), 4.97 (d, J = 10.8 Hz, 1H), 4.03 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 169.9, 152.0 (dd, J = 315.9 Hz, 125.5 Hz), 135.1, 133.38 (d, J = 3.2 Hz), 132.2, 131.1, 130.3, 129.3 (d, J = 1.4 Hz), 129.0, 128.7, 128.4, 127.8, 127.4, 121.3 (d, J = 6.9 Hz), 115.7, 113.5 (d, J = 3.3 Hz), 107.4 (d, J = 17.8 Hz), 85.9 (s), 84.6 (s), 83.3 (s), 79.7 (s), 53.4 (s), 51.1 (s), 30.4 (d, J = 5.3 Hz); ESI-HRMS: calcd. for C₂₉H₂₁FN₂O₄+Na⁺ 503.1378, found 503.1380.

3h, 43.8 mg, 92% yield, white solid; $[\alpha]_{D}^{20} = -57.0$ (c = 0.80 in CHCl₃); 84% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.29 min, t (minor) = 10.20 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.98 (d, J = 8.0 Hz, 2H), 7.63–7.59 (m, 3H), 7.54–7.53 (m, 3H), 7.26–7.18 (m, 5H), 4.94 (d, J = 10.8 Hz, 1H), 4.01 (d, J = 10.8 Hz, 1H), 3.76 (s, 3H), 3.59 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 170.0, 152.1, 142.9, 135.4, 132.7,

130.1, 129.4, 129.0, 128.4, 127.8, 124.8, 124.0, 121.0, 120.9, 117.7, 116.1, 108.8, 86.0, 83.6, 83.2, 78.7, 53.3, 51.0, 27.7, 21.7; ESI-HRMS: calcd. for $C_{30}H_{24}N_2O_4 + Na^+$ 499.1628, found 499.1626.

3i, 47.1 mg, 95% yield, white solid; $[\alpha]_{D}^{20} = -241.8$ (c = 1.25 in CHCl₃); 90% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.92 min, t (minor) = 13.02 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.03 (d, J = 8.4 Hz, 2H), 7.61–7.59 (m, 3H), 7.54–7.53 (m, 3H), 7.43 (d, J = 8.4 Hz, 2H), 7.25–7.17 (m, 3H), 4.94 (d, J = 10.8 Hz, 1H), 4.02 (d, J = 10.8 Hz, 1H), 3.76 (s, 3H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 168.7, 152.1, 138.3, 135.2,

132.7, 130.3, 129.1, 129.0, 128.4, 125.9, 123.9, 121.12, 121.06, 117.6, 115.6, 108.9, 86.4, 83.4, 83.0, 80.2, 53.4, 51.1, 27.7; ESI-HRMS: calcd. for $C_{29}H_{21}ClN_2O_4+Na^+$ 519.1082, found 519.1088.

Enantiomer of **3i**, 46.1 mg, 93% yield, white solid; $[\alpha]_D^{20} = +242.0$ (c = 1.25 in CHCl₃); -90% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 8.56 min, t (major) = 13.57 min.

3j, 49.2 mg, 95% yield, white solid; $[\alpha]_{D}^{20} = -133.4$ (c = 1.00 in CHCl₃); 91% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.52 min, t (minor) = 15.63 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 8.4 Hz, 2H), 7.61–7.59 (m, 5H), 7.55–7.54 (m, 3H), 7.24 (s, 1H), 7.21–7.19 (m, 2H), 4.95 (d, J = 10.8 Hz, 1H), 4.02 (d, J = 10.8 Hz, 1H), 3.77 (s, 3H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 168.8, 152.1, 135.2, 132.7,

132.1, 130.3, 129.2, 129.1, 128.4, 126.9, 126.4, 124.0, 121.2, 121.1, 117.7, 115.6, 108.9, 86.5, 83.4, 83.0, 80.4, 53.4, 51.2, 27.8; ESI-HRMS: calcd. for $C_{29}H_{21}BrN_2O_4+H^+$ 541.0757 (⁷⁹Br) and 543.0737 (⁸¹Br), found 541.0759, 543.0746.

Enantiomer of **3j**, 49.7 mg, 96% yield, white solid; $[\alpha]_D^{20} = +134.0$ (c = 1.00 in CHCl₃); -92% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 10.99 min, t (major) = 16.28 min.

3k, 49.2 mg, 96% yield, white solid; $[\alpha]_{D}^{20} = -371.3$ (c = 1.20 in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.92 min, t (minor) = 16.87 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.63 (d, J = 9.6 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 6.8 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.68–7.64 (m, 3H), 7.61–7.50 (m, 6H), 7.24–7.14 (m, 3H), 5.11 (d, J = 10.8 Hz,

1H), 4.15 (d, J = 10.4 Hz, 1H), 3.84 (s, 3H), 3.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 173.0, 171.0, 152.0, 135.3, 133.6, 132.7, 132.5, 130.6, 130.3, 129.3, 129.1, 128.5, 128.4, 127.4, 126.5, 125.6, 124.9, 124.8, 124.0, 121.1, 121.0, 118.0, 115.1, 108.8, 87.3, 84.2, 83.7, 83.6, 53.4, 50.7, 27.7; ESI-HRMS: calcd. for C₃₃H₂₄N₂O₄+H⁺ 513.1809, found 513.1812.

Enantiomer of **3k**, 49.2 mg, 96% yield, white solid; $[\alpha]_D^{20} = +371.0 \ (c = 1.20 \ \text{in CHCl}_3)$; -97% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254 \text{ nm}$, t (minor) = 9.76 min, t (major) = 16.47 min.

31, 48.6 mg, 95% yield, white solid; $[\alpha]_{D}^{20} = -279.3$ (c = 0.80 in CHCl₃); 84% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.38 min, t (minor) = 16.57 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.61 (s, 1H), 8.15 (d, J = 8.8 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.70–7.68 (m, 1H), 7.64–7.63 (m, 2H), 7.59–7.52 (m, 5H), 7.25–7.22 (m, 3H), 5.01 (d, J = 10.8 Hz, 1H), 4.08 (d, J = 10.8 Hz, 1H), 3.78 (s, 3H),

3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 169.8, 152.2, 135.4, 134.9, 132.8, 132.6, 130.2, 129.3, 129.1, 128.9, 128.53, 128.47, 128.2, 127.7, 126.9, 124.9, 124.1, 123.6, 121.1, 121.0, 117.8, 116.0, 108.9, 86.2, 83.6, 83.2, 80.1, 53.3, 51.3, 27.8; ESI-HRMS: calcd. for C₃₃H₂₄N₂O₄+H⁺ 513.1809, found 513.1808.

Enantiomer of **31**, 48.6 mg, 95% yield, white solid; $[\alpha]_D^{20} = +280.2$ (c = 0.80 in CHCl₃); -85% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 14.52 min, t (major) = 15.60 min

3m, 40.7 mg, 90% yield, white solid; $[\alpha]_{D}^{20} = -253.5$ (c = 1.00 in CHCl₃); 96% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 70/30, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.00 min, t (minor) = 10.62 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.62–7.58 (m, 4H), 7.53–7.52 (m, 3H), 7.24–7.22 (m, 1H), 7.20 (d, J = 2.0 Hz, 1H), 7.18 (dd, J = 5.6, 3.2 Hz, 2H), 6.55 (dd, J = 3.6, 1.2 Hz, 1H), 4.92 (d, J = 11.2 Hz, 1H), 4.01 (d,

 $J = 10.8 \text{ Hz}, 1\text{H}, 3.76 \text{ (s, 3H)}, 3.59 \text{ (s, 3H)}; {}^{13}\text{C NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta \text{ (ppm)} 170.7, 160.4, 152.1, 146.1, 143.3, 135.2, 132.7, 130.2, 129.0, 128.4, 124.0, 121.12, 121.05, 117.8, 115.8, 114.9, 112.1, 108.8, 87.0, 83.4, 83.1, 78.3, 53.3, 50.6, 27.8; ESI-HRMS: calcd. for C₂₇H₂₀N₂O₅+Na⁺ 475.1264, found 475.1270.$

3n, 44.9 mg, 92% yield, yellow solid; $[\alpha]_{D}^{20} = -177.8$ (c = 0.90 in CHCl₃); 96% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 18.89 min, t (minor) = 10.36 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.65–7.63 (m, 1H), 7.58 (d, J = 2.4 Hz, 2H), 7.55–7.51 (m, 6H), 7.41–7.37 (m, 3H), 7.23–7.20 (m, 3H), 6.84 (d, J = 16.0 Hz, 1H), 4.89 (d, J = 10.8 Hz, 1H), 3.98 (d, J = 2.4 Hz, 2H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 2.4 Hz, 2H) (minor) = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H) (minor) = 10.8 Hz, 1H

10.8 Hz, 1H), 3.77 (s, 3H), 3.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 171.0, 169.7, 152.1, 139.7, 135.3, 134.7, 132.7, 130.2, 130.1, 129.0, 128.9, 128.4, 128.0, 124.0, 121.11, 121.05, 117.8, 115.0, 112.9, 108.9, 86.5, 83.7, 83.1, 83.0, 53.3, 50.5, 27.8; ESI-HRMS: calcd. for C₃₁H₂₄N₂O₄+Na⁺ 511.1628, found 511.1631.

Me Me AeO_2C $HaeO_2C$ $HaeO_2C$ Ha

1H), 3.76 (s, 3H), 3.58 (s, 3H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 174.3, 171.0, 152.0, 135.3,

132.7, 130.2, 129.0, 128.4, 123.8, 121.1, 121.0, 117.7, 114.9, 108.8, 87.1, 83.6, 83.4, 83.0, 53.3, 50.1, 27.7, 14.5; ESI-HRMS: calcd. for C₂₄H₂₀N₂O₄+Na⁺ 423.1315, found 423.1318.

(s, 3H), 3.58 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 169.9, 152.2, 140.2, 132.7, 132.3, 132.1, 129.7, 128.7, 128.4, 127.8, 127.6, 124.0, 121.0, 120.9, 117.7, 115.9, 108.8, 86.2, 83.5, 83.0, 79.9, 53.3, 50.9, 27.7, 21.4; ESI-HRMS: calcd. for C₃₀H₂₄N₂O₄+Na⁺ 499.1628, found 499.1629.

Enantiomer of **3p**, 42.8 mg, 90% yield, white solid; $[\alpha]_D^{20} = +260.2$ (c = 1.80 in CHCl₃); -90% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 5.64 min, t (major) = 6.53 min.

3q, 46.2 mg, 94% yield, white solid; $[\alpha]_D^{20} = -201.1$ (c = 1.40 in CHCl₃); 85% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.01 min, t (minor) = 8.03 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 7.2 Hz, 2H), 7.62–7.60 (m, 1H), 7.54–7.47 (m,

5H), 7.24–7.20 (m, 3H), 7.05 (d, J = 8.0 Hz, 2H), 4.90 (d, J = 10.8 Hz, 1H), 4.03 (d, J = 10.8 Hz, 1H), 3.87 (s, 3H), 3.77 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.2, 169.8, 161.0, 152.3, 132.7, 132.1, 129.8, 128.7, 127.8, 127.6, 127.3, 124.1, 121.0, 120.9, 117.7, 115.9, 114.4, 108.8, 86.3, 83.5, 82.8, 79.9, 55.3, 53.3, 51.0, 27.7; ESI-HRMS: calcd. for C₃₀H₂₄N₂O₅+Na⁺ 515.1577, found 515.1579.

3r, 45.5 mg, 90% yield, white solid; $[\alpha]_{D}^{20} = -146.9$ (c = 0.80 in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.20 min, t (minor) = 12.32 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 7.2 Hz, 2H), 7.62–7.60 (m, 1H), 7.54–7.45 (m,

3H), 7.24–7.17 (m, 3H), 7.09–7.04 (m, 2H), 6.93 (d, J = 8.0 Hz, 1H), 6.06 (s, 2H), 4.86 (d, J = 11.2 Hz, 1H), 3.97 (d, J = 11.2 Hz, 1H), 3.77 (s, 3H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 169.9, 152.1, 149.1, 148.3, 132.7, 132.2, 128.9, 128.7, 127.8, 127.5, 124.0, 122.9, 121.1, 121.0, 117.7, 115.9, 108.9, 108.6, 108.1, 101.5, 86.2, 83.5, 83.0, 79.8, 53.3, 51.1, 27.8; ESI-HRMS: calcd. for C₃₀H₂₂N₂O₄+Na⁺ 529.1370, found 529.1370.

3s, 46.1 mg, 93% yield, white solid; $[\alpha]_{D}^{20} = -171.8$ (c = 1.10 in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.27 min, t (minor) = 7.38 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 7.6 Hz, 2H), 7.63–7.61 (m, 1H), 7.55–7.45 (m,

7H), 7.24–7.19 (m, 3H), 4.93 (d, J = 10.8 Hz, 1H), 3.99 (d, J = 10.8 Hz, 1H), 3.77 (s, 3H), 3.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 170.1, 151.8, 136.1, 133.9, 132.7, 132.3, 129.7, 129.3, 128.7, 127.8, 127.4, 123.9, 121.2, 121.1, 117.8, 115.9, 108.9, 86.2, 83.6, 82.4, 79.4, 53.4, 50.9, 27.7; ESI-HRMS: calcd. for C₂₉H₂₁ClN₂O₄+Na⁺ 519.1082, found 519.1085.

Enantiomer of **3s**, 45.6 mg, 92% yield, white solid; $[\alpha]_D^{20} = +170.6$ (c = 1.10 in CHCl₃); -92% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (minor) = 6.28 min, t (major) = 7.31 min.

3t, 51.8 mg, 96% yield, white solid; $[\alpha]_{D}^{20} = -117.1$ (*c* = 1.00 in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.86 min, t (minor) = 17.44 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, *J* = 6.8 Hz, 2H), 7.76–7.73 (m, 2H), 7.64–7.62 (m, 1H), 7.54–7.46 (m,

4H), 7.38 (t, J = 7.6 Hz, 1H), 7.26–7.19 (m, 3H), 5.68 (d, J = 10.8 Hz, 1H), 4.02 (d, J = 10.8 Hz, 1H), 3.78 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.0, 170.3, 152.0, 135.1, 133.4, 132.7, 132.2, 131.3, 129.5, 128.7, 128.2, 128.0, 127.5, 124.7, 123.9, 121.2, 121.1, 117.8, 115.8, 108.9, 86.2, 83.7, 80.5, 79.2, 53.4, 51.5, 27.8; ESI-HRMS: calcd. for C₂₉H₂₁BrN₂O₄+H⁺ 541.0757 (⁷⁹Br), 543.0737 (⁸¹Br), found 541.0760, 543.0748.

MeO

3t

3u, 50.2 mg, 93% yield, white solid; $[\alpha]_{D}^{20} = -161.3$ (*c* = 1.00 in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak OD, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.61 min, t (minor) = 15.56 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.10 (d, *J* = 7.6 Hz, 2H), 7.78 (s, 1H), 7.67–7.61 (m, 2H), 7.53–7.46 (m, 4H),

7.40 (t, J = 8.0 Hz, 1H), 7.25–7.20 (m, 2H), 4.92 (d, J = 10.8 Hz, 1H), 3.98 (d, J = 10.8 Hz, 1H), 3.77 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 170.1, 151.7, 137.6, 133.3, 132.7, 132.3, 131.2, 130.5, 128.8, 127.9, 127.4, 127.1, 123.9, 123.1, 121.18, 121.15, 117.8, 115.8, 108.9, 86.1, 83.6, 82.3, 79.3, 53.4, 51.1, 27.8; ESI-HRMS: calcd. for C₂₉H₂₁BrN₂O₄+H⁺ 541.0757 found 541.0757.

3v, 49.6 mg, 92% yield, white solid; $[\alpha]_{D}^{20} = -158.9$ (c = 1.35 in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 5.61 min, t (minor) = 6.60 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 7.6 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.62 (d, J

= 4.8 Hz, 1H), 7.52–7.45 (m, 5H), 7.25–7.19 (m, 3H), 4.92 (d, J = 10.8 Hz, 1H), 3.99 (d, J = 10.8 Hz, 1H), 3.77 (s, 3H), 3.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 170.9, 170.1, 151.8, 134.4, 132.7, 132.3, 132.2, 130.0, 128.8, 127.8, 127.4, 124.4, 123.9, 121.2, 121.1, 117.8, 115.9, 108.9, 86.2, 83.6, 82.4, 79.3, 53.4, 50.9, 27.8; ESI-HRMS: calcd. for C₂₉H₂₁BrN₂O₄+H⁺ 541.0757, found 541.0760.

3w, 49.1 mg, 96% yield, white solid; $[\alpha]_{D}^{20} = -156.0$ (c = 1.25 in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak AD, n-hexane/i-PrOH =90/10, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 19.51 min, t (minor) = 17.41 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.19 (s, 1H), 8.03 (d, J = 7.6 Hz, 3H), 7.99–7.97 (m, 1H), 7.83 (d, J = 6.4 Hz, 1H), 7.67–7.61 (m, 2H), 7.57–7.55 (m, 2H), 7.50–7.43 (m, 3H), 7.26–7.21 (m, 3H),

5.71 (d, J = 9.6 Hz, 1H), 4.41 (d, J = 10.8 Hz, 1H), 3.79 (s, 3H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 169.9, 152.1, 134.2, 132.8, 132.2, 131.5, 130.9, 130.7, 129.4, 128.7, 127.9, 127.5, 126.8, 126.0, 125.2, 124.1, 123.2, 121.2, 121.1, 117.7, 115.7, 108.9, 86.4, 83.7, 80.2, 53.4, 50.4, 27.8; ESI-HRMS: calcd. for C₃₃H₂₄N₂O₄+Na⁺ 535.1628, found 535.1627.

3x, 48.6 mg, 95% yield, white solid; $[\alpha]_{D}^{20} = -167.9$ (c = 0.90 in CHCl₃); 99% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.84 min, t (minor) =22.18 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.14 (d, J = 7.2 Hz, 2H), 8.07 (s, 1H), 8.05 (d, J = 8.4 Hz,

1H), 7.98–7.93 (m, 2H), 7.75 (d, J = 8.4 Hz, 1H), 7.69–7.67 (m, 1H), 7.59–7.56 (m, 2H), 7.54–7.47 (m, 3H), 7.26–7.23 (m, 3H), 5.15 (d, J = 10.8 Hz, 1H), 4.20 (d, J = 10.8 Hz, 1H), 3.81 (s, 3H), 3.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 171.1, 169.9, 152.1, 134.1, 133.1, 132.7, 132.5, 132.2, 129.1, 128.73, 128.71, 128.3, 128.0, 127.8, 127.5, 127.0, 126.7, 124.7, 124.0, 121.1, 121.0, 117.8, 115.8, 108.9, 86.2, 83.6, 83.3, 79.8, 53.3, 50.8, 27.8; ESI-HRMS: calcd. for C₃₃H₂₄N₂O₄+Na⁺ 535.1628, found 535.1631.

3y, 42.1 mg, 90% yield, yellow solid; $[\alpha]_D^{20} = -293.2$ (c = 1.50 in CHCl₃); 95% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.87 min, t (minor) = 9.02 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.09 (d, J = 7.2 Hz, 2H), 7.62–7.59 (m, 2H), 7.53–7.49 (m, 2H), 7.48–7.44 (m, 2H), 7.37 (d, J = 4.8 Hz, 1H), 7.23–7.18 (m, 3H), 5.08 (d, J = 10.8 Hz, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.77 (s, 3H), 3.60 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 171.0, 169.7, 151.9, 136.2, 132.7, 132.2, 128.7, 127.8, 127.5, 126.6, 126.3, 124.0, 121.1, 121.0, 117.8, 115.8, 108.8, 86.1, 83.6, 79.8, 78.3, 53.3, 50.9, 27.8; ESI-HRMS: calcd. for C₂₇H₂₀N₂O₄S+Na⁺ 491.1036, found 491.1045.

7. General procedure for asymmetric [3 + 2] annulations

The Morita-Baylis-Hillman carbonate **4** (0.1 mmol), α -cyano- α , β -unsaturated ketone **2** (0.1 mmol), and catalyst **C3** (2.9 mg, 0.01 mmol) were dissolved in 1,2-dichloroethane (DCE, 1.0 mL). Then the solution was

stirred at -20 °C for 24 h. After completion, the mixture was directly purified by column chromatography on silica gel eluting with petroleum ether/ethyl acetate (5:1 to 3:1) to afford the product **5**.

5a, 34.1 mg, 93% yield, white solid; $[\alpha]_D^{20} = -261.3$ (c = 1.10 in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.92 min, t (minor) = 23.67 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.47–7.42 (m, 6H), 7.13 (t, J = 8.0 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 6.97 (d, J = 8.0 Hz, 2H), 5.45 (d, J

= 2.0 Hz, 1H), 3.37 (s, 3H), 1.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 195.6, 171.3, 151.7, 143.8, 135.2, 131.7, 129.6, 129.2, 129.0, 126.3, 123.9, 122.2, 115.2, 115.0, 112.3, 109.5, 67.3, 65.8, 55.4, 27.8, 27.3; ESI-HRMS: calcd. for C₂₃H₁₇N₃O₂+Na⁺ 390.1213, found 390.1214.

5b, 35.1 mg, 92% yield, white solid; $[\alpha]_D^{20} = -189.4$ (c = 1.25 in CHCl₃); 92% ee, determined by HPLC analysis [Chiralpak IE, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 32.49 min, t (minor) = 20.35 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.45 (t, *J* = 8.0 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.04 (d, *J* = 2.4 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 2H), 5.40 (d, *J* = 2.0 Hz, 1H), 3.37 (s, 3H), 2.36

(s, 3H), 1.82 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 195.6, 171.3, 151.9, 143.8, 139.0, 132.0, 131.6, 129.7, 129.3, 126.2, 123.8, 122.1, 115.1, 114.9, 112.3, 109.4, 67.3, 65.8, 55.1, 27.9, 27.3, 21.2; ESI HRMS: calcd. for C₂₄H₁₉N₃O₂+Na⁺ 404.1369, found 404.1372.

5c, 42.3 mg, 95% yield, white solid; $[\alpha]_D^{20} = -248.3$ (c = 1.40 in CHCl₃); >99% ee, determined by HPLC analysis [Chiralpak IF, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.67 min, t (minor) = 40.31 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.55 (d, J = 8.4 Hz, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 2.4 Hz, 1H), 6.98 (d, J = 8.8 Hz, 1H), 6.95 (d, J = 7.6 Hz, 1H), 5.38 (d, J = 2.0 Hz, 1H), 3.37 (s, 3H), 1.83 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 195.5, 171.2, 150.8,

143.8, 134.1, 132.1, 131.8, 131.2, 126.1, 123.9, 123.5, 121.8, 115.6, 114.9, 112.0, 109.5, 66.8, 65.8, 54.9, 27.9, 27.3; ESI HRMS: calcd. for C₂₃H₁₆BrN₃O₂+Na⁺ 468.0318, found 468.0321.

5d, 32.1 mg, 90% yield, white solid; $[\alpha]_D^{20} = -130.5$ (c = 0.9 in CHCl₃); 98% ee, determined by HPLC analysis [Chiralpak IF, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.78 min, t (minor) = 28.96 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.49–7.45 (m, 2H), 7.11 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 7.00 (d, J = 8.0 Hz, 1H), 6.68 (d, J

= 3.2 Hz, 1H), 6.47–6.44 (m, 2H), 4.43 (d, J = 1.6 Hz, 1H), 3.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 198.1, 172.3, 146.1, 144.9, 144.0, 132.2, 131.5, 125.0, 123.5, 123.2, 120.4, 117.0, 115.7, 111.9, 110.1, 109.6, 63.6, 62.5, 42.1, 30.5, 26.9; ESI HRMS: calcd. for C₂₁H₁₅N₃O₃+Na⁺ 380.1006, found 380.1008.

5e, 43.1 mg, 93% yield, white solid; $[\alpha]_D^{20} = -221.2$ (c = 1.30 in CHCl₃); 97% ee, determined by HPLC analysis [Chiralpak AD, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 25.36 min, t (minor) = 29.50 min]; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.56–7.52 (m, 4H), 7.45–7.38 (m, 3H), 7.23–7.19 (m, 1H), 7.16 (d, J

= 8.4Hz, 2H), 7.12 (d, J = 2.0 Hz, 1H), 7.04–6.99 (m, 2H), 6.44 (d, J = 8.0 Hz, 1H), 5.86 (d, J = 1.6 Hz, 1H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 186.6, 170.5, 150.9, 143.0, 140.6, 135.0, 132.4, 131.3, 129.9, 129.6, 129.1, 128.8, 128.3, 125.2, 123.5, 122.6, 115.9, 113.7, 112.2, 108.7, 66.4, 64.6, 55.8, 26.8; ESI HRMS: calcd. for C₂₈H₁₈ClN₃O₂+Na⁺ 486.0980, found 486.0983.

8. Crystal data and structural refinement for enantiopure 3t and 5a

Identification code	3t
Empirical formula	$C_{29}H_{21}BrN_2O_4$
Formula weight	541.39
Temperature/K	292.4(3)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.08473(14)
b/Å	16.7619(4)
c/Å	22.0850(6)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	2622.68(10)

Z	4
$\rho_{calc}g/cm^3$	1.371
µ/mm ⁻¹	2.438
F(000)	1104.0
Crystal size/mm ³	$0.8 \times 0.7 \times 0.3$
Radiation	CuKa ($\lambda = 1.54184$)
2Θ range for data collection/°	10.556 to 144.988
Index ranges	$-5 \le h \le 8, -19 \le k \le 20, -27 \le l \le 25$
Reflections collected	14476
Independent reflections	5097 [$R_{int} = 0.0440$, $R_{sigma} = 0.0321$]
Data/restraints/parameters	5097/0/327
Goodness-of-fit on F ²	1.038
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0783, wR_2 = 0.2136$
Final R indexes [all data]	$R_1 = 0.0825, wR_2 = 0.2211$
Largest diff. peak/hole / e Å $^{-3}$	0.82/-1.36
Flack parameter	-0.044(14)

Identification code	5a
Empirical formula	C23H17N3O2
Formula weight	367.39
Temperature/K	292.6(5)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	10.06732(18)

b/Å	10.59058(14)
c/Å	22.9703(4)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2449.06(7)
Z	4
$\rho_{calc}g/cm^3$	0.996
µ/mm ⁻¹	0.524
F(000)	768.0
Crystal size/mm ³	$0.7 \times 0.3 \times 0.2$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.196 to 145.212
Index ranges	$-12 \le h \le 11, -13 \le k \le 8, -28 \le l \le 20$
Reflections collected	13639
Independent reflections	4769 [$R_{int} = 0.0309, R_{sigma} = 0.0272$]
Data/restraints/parameters	4769/14/255
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0439, wR_2 = 0.1225$
Final R indexes [all data]	$R_1 = 0.0463, wR_2 = 0.1268$
Largest diff. peak/hole / e Å ⁻³	0.14/-0.22
Flack parameter	-0.03(14)

9. DFT computational calculation studies

Computational method:

All calculations were carried out with the GAUSSIAN 09 packages.⁴ The recently developed M06-2x functional,⁵ together with the standard 6-31G(d) basis set, were used for optimizing the geometry of all the minima and transition states. All the optimized structures were confirmed by frequency calculations to be either minima or transition states using the same level of theory. For transition states, intrinsic reaction coordinate analysis (IRC) was done to verify that they connect

the right reactants.⁶ To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries.⁷ The solution-phase single point energy calculations were done using M06-2x method at a larger basis set 6-311+G(2d,p). Solvent effect was accounted for using self-consistent reaction field (SCRF) method, using SMD model and UAKS radii.⁸ Dichloromethane was used as the solvent. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. All of these energies correspond to the reference state of 1 mol/L, 298 K. All energetics reported throughout the text are in kcal/mol, and the bond lengths are in angstroms (Å). Structures were generated using GaussView5.0.8 and CYLview.

Scheme 1. Proposed catalytic cycles for domino reaction and [3+2] annulation.

Scheme 2. Computed potential energy surface of the formation of 30 and 5'.

Scheme 3. Key transition states and related energy for the reaction of 1a and 2b.

4-II ∆G = 0.0 kcal/mol

4-TS_[2+1] ∆G = 23.4 kcal/mol

4-TS_[3+2] ∆G = 18.3 kcal/mol

Scheme 4. Key transition states and related energy for the reaction of 4 and 2b.

Density functional theory (DFT) computational calculations were performed to clarify the mechanism of the formation of dihydropyrano[2,3-b]indole architectures and the selectivity for different substrates. These geometries of intermediates and transition states (TSs) were optimized using M062X functional together with the standard 6-31G(d) basis set, and the energies were calculated at 6-311+G(2d,p) level (CH₂Cl₂ as solvent). As our previous calculation, ⁹ the ringclosure steps were considered as the decisive processes for formation of five-membered ring product by a sequential Michael addition via $TS_{[3+2]}$ and three-membered ring intermediate by a S_N2 process via $TS_{[2+1]}$ (Scheme 1). For the reaction of the substrates 1a with an electron-withdrawing group COOMe, and alkene 2b catalyzed by DABCO, the energy barrier of 1a-TS_[2+1] was 5.8 kcal/mol lower than that of **1a-TS**_[3+2], indicating that the [3+2] process was unfavorable (Schemes 2 and 3). Actually, [3+2] product 5' wasn't found in our experiment. Due to the strong electron withdrawing ability of cyano and acetyl groups at the cyclopropane ring of **1a-III**, the lone pair electrons at O1 atom would attack the benzylic position and the ring would be opened. The O2 atom would accept the electron from the C-C bond breaking, and add to the double bond by Michael addition to generate product 30. The transition state $1a-TS_{30}$ for this rearrangement was calculated with energy barrier of 16.0 kcal/mol, suggesting a potentially concerted mechanism leading to the high diastereocontrol in the observed product **30**. The energy difference of the intermediate **1a-III** and dihydropyrano[2,3-b]indole product 30 was 8.7 kcal/mol, suggesting the 1a-III may be converted directly to the thermodynamically stable product **30** (Scheme 2).

In contrast, the reaction of **4** with a cyano group and alkene **2** produced [3+2] spiro compound **5a**. The calculated energy barrier of **4-TS**_[2+1] was 5.1 kcal/mol higher than **4-TS**_[3+2], indicating that the [3+2] process was favorable and the theoretical result is consistent with the experimental data (Scheme 4).

To further analyze the selectivity, the natural population analysis (NPA) charge evaluation towards the reactants was conducted. The NPA charge values of **1a-II** and **4-II** showed that the eletrophilicity of C1 in **1a-II** was much weaker than that of C4 in **4-II** due to the higher negative charge, which suggested that a nucleophilic carbon anion would be easier to add to C4 atom. Moreover, the nucleophilicity of C2 is slightly stronger than that of C5. In addition, the distance of C3-N1 bond with value of 1.57 Å was a little longer than that of C6-N2 bond (1.55 Å), suggesting that DABCO in **1a-II** is easier to leave than that in **4-II** via a S_N2 reaction. Therefore, the introduction of a stronger electron-withdrawing group at C=C bond facilitated the Michael addition process, resulting in the completely switchable regioselectivity.

Scheme 5. Optimized structure of **1a-II** and **4-II.** The values in parentheses are corresponding NPA charge of certain atoms. The numbers in red were the distances between C-N bonds in Å.

(4) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.

(5) (a) Y. Zhao, N. E. Schultz and D. Truhlar, J. Chem. Phys., 2005, 123, 161103; (b) Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory. Comput., 2006, 2, 364; (c) Y. Zhao and D. G. Truhlar, J. Chem. Theory. Comput., 2006, 2, 1009; (d) Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157; (e) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215; (f) Y. Zhao and D. G. Truhlar, Chem. Phys. Lett., 2011, 502, 1.

(6) K. Fukui, Acc. Chem. Res., 1981, 14, 363.

(7) J. M. Um, D. A. DiRocco, E. L. Noey, T. Rovis and K. Houk, J. Am. Chem. Soc., 2011, 133, 11249.

(8) (a) A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2009, **113**, 6378; (b) R.
F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, *J. Phys. Chem. B*, 2011, **115**, 14556.

(9) G. Zhan, M.-L. Shi, Q. He, W.-J. Lin, Q. Ouyang, W. Du and Y.-C. Chen, *Angew. Chem., Int. Ed.*, 2016, **55**, 2147.

Computational data:

1a-II

Zero-point correction=				0.588938 (Hartree/Particle)				
Thermal correction to Energy=				0.622199				
Thermal	correc	tion to l	Enthalpy=	0.62	23143			
Thermal	correc	tion to	Gibbs Free E	nergy=	0.525358			
SCF Done: E(SOV) = -1682.21857759 A.U.								
Center	Atom	nic A	tomic	Coordinate	es (Angstroms)			
Number	Nur	nber	Туре	X Y	Z			
1	6	0	-5.484287	-0.377648	0.913060			
2	6	0	-6.058917	0.217630	-0.205069			
3	6	0	-5.264926	0.886448	-1.136842			
4	6	0	-3.901423	0.924964	-0.905625			
5	6	0	-3.282134	0.305440	0.201978			
6	6	0	-4.104004	-0.345421	1.121942			
7	7	0	-2.954876	1.591590	-1.680324			
8	6	0	-1.711208	1.474152	-1.136091			
9	6	0	-1.828293	0.535606	0.051591			
10	8	0	-0.733103	2.110031	-1.522350			
11	6	0	-3.237779	2.332573	-2.884272			
12	6	0	0.664804	0.205343	0.032788			
13	6	0	-0.722680	0.016744	0.657317			
14	6	0	-0.834986	-0.880146	1.848151			
15	8	0	-1.771216	-1.579487	2.145353			

16	8	0	0.258580	-0.783921	2.631905
17	6	0	0.290389	-1.711177	3.730743
18	6	0	0.234152	-2.110150	-0.494330
19	6	0	1.358069	-1.164290	-0.118728
20	1	0	-6.113283	-0.887717	1.635141
21	1	0	-7.132769	0.167167	-0.356482
22	1	0	-5.697980	1.360920	-2.011287
23	1	0	-3.684564	-0.831041	1.988733
24	1	0	-3.955149	3.135498	-2.684632
25	1	0	-3.643465	1.663068	-3.648678
26	1	0	-2.297633	2.758883	-3.233795
27	1	0	1.260586	-1.562653	4.205127
28	1	0	0.198249	-2.724946	3.341617
29	1	0	-0.517823	-1.483394	4.428682
30	1	0	0.487923	0.586285	-0.968864
31	6	0	2.513776	-1.175979	-1.104403
32	6	0	3.758683	-1.674258	-0.712570
33	6	0	2.353959	-0.741756	-2.427444
34	6	0	4.828122	-1.719117	-1.605349
35	1	0	3.879462	-2.054302	0.300091
36	6	0	3.421549	-0.782212	-3.318419
37	1	0	1.382864	-0.388383	-2.768645
38	6	0	4.664620	-1.265033	-2.909821
39	1	0	5.785705	-2.115247	-1.280362
40	1	0	3.279295	-0.444345	-4.340625
41	1	0	5.494806	-1.297683	-3.608654
42	1	0	1.712058	-1.539187	0.845143
43	6	0	-0.583290	-1.750642	-1.576841
44	7	0	-1.240867	-1.291431	-2.429242
45	6	0	0.016909	-3.262077	0.321912
46	8	0	0.724011	-3.511535	1.312011
47	6	0	-1.183728	-4.136263	0.021613
48	1	0	-2.011872	-3.788284	0.650238
49	1	0	-1.497745	-4.082938	-1.023169
50	1	0	-0.952883	-5.167441	0.296060

5	1	6	0	2.614832	0.826094	1.588383
52	2	1	0	2.146266	0.132866	2.282803
53	3	1	0	3.320957	0.284040	0.956419
54	4	6	0	2.228709	2.101912	-0.449943
55	5	1	0	2.721728	1.364880	-1.084893
50	5	1	0	1.428290	2.579867	-1.017588
57	7	6	0	0.683715	2.325230	1.418740
58	8	1	0	-0.149893	2.581184	0.765459
59	9	1	0	0.310330	1.792707	2.296315
60)	7	0	2.966827	3.283518	1.603891
6	1	6	0	3.228734	3.102404	0.176240
62	2	1	0	3.150611	4.070064	-0.327126
63	3	1	0	4.257660	2.749041	0.060563
64	4	6	0	3.277122	2.033438	2.294223
65	5	1	0	4.361689	1.895789	2.321018
60	5	1	0	2.927014	2.120621	3.327238
6	7	6	0	1.543569	3.559998	1.781140
68	8	1	0	1.361418	3.848497	2.820236
69	9	1	0	1.278527	4.411580	1.147850
70)	7	0	1.540212	1.341044	0.663712

1a-TS_[2+1]

Zero-point correction=	0.583783 (Hartree/Particle)							
Thermal correction to Energy=	0.618064							
Thermal correction to Enthalpy= 0.619008								
Thermal correction to Gibbs Free Energy= 0.517083								
SCF Done: E(SOV) = -1682.18453	033 A.U.							
Center Atomic Atomic	Coordinates (Angstroms)							
Number Number Type	X Y Z							
1 6 0 -5.362225	-0.080870 1.132474							

2	6	0	-6.018203	0.446402	0.022934
3	6	0	-5.305115	0.831831	-1.113661
4	6	0	-3.931683	0.655859	-1.098265
5	6	0	-3.245641	0.090373	-0.003702
6	6	0	-3.978046	-0.260415	1.127684
7	7	0	-3.023785	1.024796	-2.090043
8	6	0	-1.728096	0.794809	-1.685334
9	6	0	-1.818081	0.083124	-0.356154
10	8	0	-0.742360	1.150802	-2.312690
11	6	0	-3.363630	1.695678	-3.321657
12	6	0	0.629484	-0.262552	-0.214563
13	6	0	-0.737368	-0.436620	0.285886
14	6	0	-0.904473	-1.096738	1.625378
15	8	0	-0.355689	-0.695269	2.625261
16	8	0	-1.737138	-2.130300	1.580162
17	6	0	-1.891109	-2.840753	2.814961
18	6	0	1.018972	-2.264058	-0.535005
19	6	0	1.758460	-1.145906	0.166904
20	1	0	-5.931107	-0.356418	2.014051
21	1	0	-7.096171	0.572023	0.042577
22	1	0	-5.805777	1.263353	-1.974331
23	1	0	-3.491775	-0.662973	2.007439
24	1	0	-3.868124	2.646469	-3.118308
25	1	0	-4.016455	1.064962	-3.932272
26	1	0	-2.431964	1.882378	-3.856494
27	1	0	-2.612421	-3.628916	2.605476
28	1	0	-2.265163	-2.168254	3.591444
29	1	0	-0.926041	-3.256747	3.105716
30	1	0	0.671767	0.123879	-1.227740
31	6	0	3.139166	-0.823316	-0.348715
32	6	0	4.236384	-1.021500	0.492776
33	6	0	3.366108	-0.383744	-1.657306
34	6	0	5.532144	-0.773128	0.048581
35	1	0	4.068633	-1.378939	1.506226
36	6	0	4.661800	-0.134784	-2.101807

37	1	0	2.535681	-0.243881	-2.344617
38	6	0	5.748087	-0.325029	-1.251319
39	1	0	6.371232	-0.933543	0.718796
40	1	0	4.820708	0.202896	-3.121356
41	1	0	6.756841	-0.131201	-1.602697
42	1	0	1.771674	-1.401879	1.229245
43	6	0	0.990563	-2.362811	-1.947564
44	7	0	0.945079	-2.440864	-3.107974
45	6	0	0.551803	-3.378665	0.280442
46	8	0	0.746847	-3.410129	1.493911
47	6	0	-0.210336	-4.486636	-0.413554
48	1	0	-1.182085	-4.098385	-0.739610
49	1	0	0.314305	-4.844995	-1.303380
50	1	0	-0.362504	-5.304152	0.291887
51	6	0	1.927356	1.525822	1.734249
52	1	0	1.412996	0.860109	2.432786
53	1	0	2.844291	1.037644	1.395898
54	6	0	1.765836	2.480899	-0.476284
55	1	0	2.617553	1.890360	-0.822602
56	1	0	1.077261	2.613971	-1.316091
57	6	0	-0.158479	2.430466	0.960411
58	1	0	-0.826499	2.484254	0.097263
59	1	0	-0.651463	1.846946	1.744076
60	7	0	1.695228	3.989913	1.502676
61	6	0	2.225571	3.833873	0.147286
62	1	0	1.884029	4.679579	-0.457931
63	1	0	3.317493	3.885406	0.203807
64	6	0	2.231488	2.923207	2.349579
65	1	0	3.310314	3.073937	2.456206
66	1	0	1.782669	3.023102	3.343014
67	6	0	0.241816	3.852250	1.453337
68	1	0	-0.161986	4.044750	2.452220
69	1	0	-0.151008	4.621905	0.781211
70	7	0	1.054120	1.693173	0.552055

1a-TS_[3+2]

Zero-point correction=	0.587688 (Hartree/Particle)
Thermal correction to Energy=	0.619996
Thermal correction to Enthalpy=	0.620940
Thermal correction to Gibbs Free Ene	rgy= 0.526303
SCF Done: E(SOV) = -1682.1845080	9 A.U.

Center	Atomic	А	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-4.850283	-1.595725	-0.737669
2	6	0	-5.635707	-0.741464	0.031391
3	6	0	-5.049420	0.136840	0.943407
4	6	0	-3.667059	0.117849	1.048362
5	6	0	-2.852487	-0.730196	0.283304
6	6	0	-3.457551	-1.593682	-0.622843
7	7	0	-2.883425	0.910452	1.889564
8	6	0	-1.552699	0.682449	1.691719
9	6	0	-1.420788	-0.347287	0.550939
10	8	0	-0.668264	1.250076	2.320239
11	6	0	-3.390068	1.972597	2.725129
12	6	0	0.897255	-0.239085	0.438852
13	6	0	-0.257048	-1.204620	0.516819
14	6	0	-0.374301	-2.503681	-0.073562
15	8	0	-1.326931	-3.263425	-0.016940
16	8	0	0.779198	-2.945980	-0.716733
17	6	0	0.633936	-4.199948	-1.370197
18	6	0	-0.906872	0.861993	-0.858767
19	6	0	0.621041	0.699011	-0.811971
20	1	0	-5.321555	-2.274533	-1.441079
21	1	0	-6.716124	-0.755389	-0.075605
22	1	0	-5.649924	0.810364	1.546144
23	1	0	-2.857686	-2.255585	-1.232873

24	1	0	-4.098604	1.578153	3.459724
25	1	0	-3.881107	2.731578	2.107138
26	1	0	-2.537338	2.418031	3.237233
27	1	0	1.608685	-4.423821	-1.809444
28	1	0	-0.125396	-4.133203	-2.152841
29	1	0	0.342276	-4.980309	-0.664004
30	1	0	0.827309	0.407452	1.314954
31	6	0	1.391763	1.999919	-0.830212
32	6	0	2.260499	2.278832	-1.888525
33	6	0	1.292394	2.923387	0.219820
34	6	0	3.033051	3.439092	-1.896152
35	1	0	2.326688	1.579650	-2.720097
36	6	0	2.060269	4.083150	0.209852
37	1	0	0.615844	2.725237	1.049267
38	6	0	2.937857	4.342266	-0.842392
39	1	0	3.702217	3.637737	-2.728001
40	1	0	1.969979	4.791016	1.028149
41	1	0	3.536243	5.248052	-0.843856
42	1	0	0.872123	0.118040	-1.704364
43	6	0	-1.462407	2.167359	-0.596087
44	7	0	-1.982493	3.171729	-0.336923
45	6	0	-1.518983	0.193494	-2.056938
46	8	0	-0.981578	-0.793462	-2.529133
47	6	0	-2.807380	0.747456	-2.618729
48	1	0	-3.517862	1.005604	-1.828370
49	1	0	-2.586579	1.666831	-3.174160
50	1	0	-3.243511	0.009176	-3.292453
51	6	0	2.981880	-1.128171	-0.760241
52	1	0	2.258447	-1.689255	-1.345752
53	1	0	3.202738	-0.176865	-1.251136
54	6	0	3.226944	0.304725	1.171596
55	1	0	3.076090	1.232533	0.624946
56	1	0	2.871193	0.441619	2.196133
57	6	0	2.377668	-1.927324	1.525551
58	1	0	1.786763	-1.622323	2.391055

59	1	0	1.878452	-2.755039	1.033004
60	7	0	4.755335	-1.625287	0.897564
61	6	0	4.695275	-0.180438	1.104600
62	1	0	5.212372	0.074361	2.034020
63	1	0	5.226394	0.310680	0.283706
64	6	0	4.267411	-1.921621	-0.452755
65	1	0	5.041861	-1.668343	-1.182851
66	1	0	4.083032	-2.998533	-0.520025
67	6	0	3.851363	-2.250091	1.863086
68	1	0	4.002522	-3.333031	1.847008
69	1	0	4.120890	-1.893163	2.861827
70	7	0	2.339277	-0.760737	0.556765

1a-III

Zero-point correction=	0.396055 (Hartree/Particle)
Thermal correction to Energy=	0.422807
Thermal correction to Enthalpy=	0.423751
Thermal correction to Gibbs Free Ener	rgy= 0.338055
SCF Done: E(SOV) = -1336.8967730	06 A.U.

Center	Atom	ic A	tomic	Coordinate	es (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	6	0	-5.352201	0.431873	-0.445307
2	6	0	-5.742944	-0.900215	-0.357565
3	6	0	-4.801407	-1.905029	-0.131457
4	6	0	-3.478168	-1.523633	0.009633
5	6	0	-3.050880	-0.179013	-0.064816
6	6	0	-4.012474	0.801250	-0.308851
7	7	0	-2.396817	-2.370395	0.239962
8	6	0	-1.226488	-1.658540	0.344695
9	6	0	-1.586723	-0.192295	0.136313

10	8	0	-0.143507	-2.145303	0.601425
11	6	0	-2.475489	-3.800977	0.407220
12	6	0	0.808013	0.374557	0.484334
13	6	0	-0.624289	0.753807	0.231350
14	6	0	-0.970523	2.210706	0.228496
15	8	0	-1.882868	2.727466	-0.364607
16	8	0	-0.129544	2.909304	1.014636
17	6	0	-0.379585	4.315574	1.040425
18	6	0	1.971541	1.231798	-0.016280
19	6	0	1.684787	-0.178660	-0.574864
20	1	0	-6.094944	1.200462	-0.630653
21	1	0	-6.789110	-1.166956	-0.472469
22	1	0	-5.093435	-2.948241	-0.069153
23	1	0	-3.726368	1.837373	-0.404644
24	1	0	-2.880330	-4.271366	-0.494467
25	1	0	-3.110582	-4.055508	1.262048
26	1	0	-1.461981	-4.162271	0.584493
27	1	0	0.355777	4.733334	1.726523
28	1	0	-1.393729	4.514575	1.392305
29	1	0	-0.262467	4.733807	0.036919
30	1	0	0.985505	-0.020117	1.482012
31	6	0	2.670515	-1.279338	-0.383671
32	6	0	3.419527	-1.687631	-1.490529
33	6	0	2.903339	-1.886677	0.851042
34	6	0	4.385406	-2.680742	-1.368246
35	1	0	3.242193	-1.219537	-2.455807
36	6	0	3.872263	-2.876655	0.975329
37	1	0	2.311257	-1.608292	1.716557
38	6	0	4.616588	-3.276451	-0.131418
39	1	0	4.957639	-2.986762	-2.238657
40	1	0	4.040672	-3.341431	1.941762
41	1	0	5.370846	-4.050593	-0.030009
42	1	0	1.271576	-0.090717	-1.578358
43	6	0	3.065639	1.390442	0.911955
44	7	0	3.938074	1.533766	1.658158

45	5 6	ō	0	1.708277	2.377849	-0.957290
46	5 8	8	0	0.846002	2.272954	-1.803736
47	7 6	ō	0	2.544583	3.619542	-0.792155
48	3 1		0	2.453727	3.995627	0.232471
49) 1		0	3.602972	3.386345	-0.950491
50) 1		0	2.215481	4.372048	-1.509037

1a-TS₃₀

Zero-poir	nt correc	ction=	0.39507	6 (Hartree/Particle)	
Thermal	correcti	on to	0.42	21747	
Thermal	correcti	on to	0.42	22691	
Thermal	correcti	on to	Gibbs Free E	inergy=	0.337285
SCF Don	e: E(SC	OV) =	-1336.87051	1491 A.U.	
Center	Atomic	c A	tomic	Coordinate	es (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	5.354928	0.224223	0.015502
2	6	0	5.643277	-1.137919	0.011048
3	6	0	4.617190	-2.085465	-0.006018
4	6	0	3.320914	-1.607314	-0.026166
5	6	0	3.000429	-0.237407	-0.036013
6	6	0	4.037775	0.689033	-0.002166
7	7	0	2.135689	-2.371069	-0.026709
8	6	0	1.060422	-1.561405	-0.036473
9	6	0	1.530074	-0.154647	-0.082087
10	8	0	-0.118875	-1.986234	-0.027857
11	6	0	2.079389	-3.816524	0.016157
12	6	0	-0.846552	0.554101	-0.401534
13	6	0	0.628082	0.835208	-0.248789
14	6	0	1.047492	2.261277	-0.460136
15	8	0	1.964314	2.814307	0.091942

16	8	0	0.266805	2.835826	-1.378334
17	6	0	0.518983	4.223068	-1.608408
18	6	0	-1.767556	1.508535	0.327185
19	6	0	-1.337202	-0.620709	0.342224
20	1	0	6.167248	0.942885	0.043199
21	1	0	6.675505	-1.472482	0.029248
22	1	0	4.829135	-3.149754	-0.000628
23	1	0	3.824982	1.748757	0.029571
24	1	0	2.594988	-4.181976	0.908799
25	1	0	2.552399	-4.238223	-0.875168
26	1	0	1.030388	-4.110195	0.048943
27	1	0	-0.225712	4.539631	-2.335936
28	1	0	1.530034	4.364654	-1.996496
29	1	0	0.410222	4.778797	-0.674793
30	1	0	-1.081547	0.525854	-1.470527
31	6	0	-2.588898	-1.321304	0.005404
32	6	0	-3.075043	-2.265711	0.917551
33	6	0	-3.283299	-1.103775	-1.188669
34	6	0	-4.231753	-2.982448	0.642494
35	1	0	-2.533377	-2.435366	1.844514
36	6	0	-4.448548	-1.812930	-1.456498
37	1	0	-2.942140	-0.360450	-1.900975
38	6	0	-4.922216	-2.754192	-0.546516
39	1	0	-4.600786	-3.711172	1.357196
40	1	0	-4.990749	-1.621620	-2.376568
41	1	0	-5.833289	-3.304553	-0.760066
42	1	0	-1.064169	-0.594019	1.394737
43	6	0	-2.948745	1.918564	-0.324649
44	7	0	-3.914173	2.218572	-0.903325
45	6	0	-1.355005	1.965154	1.615018
46	8	0	-0.277517	1.589440	2.104843
47	6	0	-2.242675	2.921108	2.386647
48	1	0	-1.722781	3.879140	2.483535
49	1	0	-3.211305	3.084009	1.910710
50	1	0	-2.386242	2.525742	3.395545

30

Zero-point correction=	0.399019 (Hartree/Particle)
Thermal correction to Energy=	0.424903
Thermal correction to Enthalpy=	0.425847
Thermal correction to Gibbs Free Ene	rgy= 0.341665
SCF Done: $E(SOV) = -1336.9141673$	30 A.U.

Center	Atomic	At	omic	Coordinate	s (Angstroms)
Number	Numbe	er	Туре	X Y	Ζ
1	6	0	5.159982	0.267202	0.541846
2	6	0	5.454255	-1.105070	0.509433
3	6	0	4.445677	-2.056166	0.413156
4	6	0	3.134802	-1.591970	0.349484
5	6	0	2.817304	-0.212557	0.390392
6	6	0	3.850674	0.724856	0.486200
7	7	0	1.949905	-2.309507	0.237617
8	6	0	0.927236	-1.406315	0.203838
9	6	0	1.384699	-0.120540	0.306941
10	8	0	-0.340090	-1.822438	0.067089
11	6	0	1.821975	-3.748741	0.192970
12	6	0	-0.962919	0.537288	-0.232595
13	6	0	0.469465	1.021325	0.104446
14	6	0	1.001775	1.963166	-0.992085
15	8	0	1.356460	3.097461	-0.807591
16	8	0	1.042926	1.339920	-2.173831
17	6	0	1.597253	2.115520	-3.238495
18	6	0	-1.752248	1.675949	0.381613
19	6	0	-1.279755	-0.805907	0.464867
20	1	0	5.973073	0.982278	0.617363
21	1	0	6.488204	-1.431120	0.560240

22	1	0	4.672131	-3.117925	0.384874
23	1	0	3.623840	1.786924	0.520193
24	1	0	2.279316	-4.196917	1.080109
25	1	0	2.305498	-4.150201	-0.702824
26	1	0	0.761039	-3.999019	0.171001
27	1	0	1.554514	1.480114	-4.121082
28	1	0	2.630036	2.382924	-3.004807
29	1	0	1.015073	3.027350	-3.386882
30	1	0	-1.095861	0.426623	-1.312681
31	6	0	-2.664245	-1.294323	0.139752
32	6	0	-3.713744	-1.052207	1.023909
33	6	0	-2.919210	-1.929864	-1.076958
34	6	0	-5.011849	-1.428879	0.692003
35	1	0	-3.516407	-0.552174	1.969078
36	6	0	-4.213968	-2.318949	-1.401686
37	1	0	-2.097105	-2.126863	-1.759269
38	6	0	-5.262782	-2.064426	-0.519795
39	1	0	-5.825244	-1.223955	1.380481
40	1	0	-4.406517	-2.816302	-2.347304
41	1	0	-6.274670	-2.359712	-0.779205
42	1	0	-1.165413	-0.656114	1.547722
43	6	0	-3.117088	1.991549	0.150421
44	7	0	-4.228378	2.267104	-0.034729
45	6	0	-0.949049	2.331666	1.249123
46	8	0	0.311148	1.849845	1.279514
47	6	0	-1.230904	3.477944	2.147514
48	1	0	-0.595102	4.320407	1.859282
49	1	0	-2.280644	3.768469	2.085067
50	1	0	-0.984022	3.210446	3.179199

4-II

Zero-point correction=0.542143 (Hartree/Particle)Thermal correction to Energy=0.573473Thermal correction to Enthalpy=0.574417Thermal correction to Gibbs Free Energy=0.479184SCF Done:E(SOV) = -1546.60593438A.U.

Center	Atomic	А	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-5.254327	0.387390	-1.488520
2	6	0	-5.988151	0.090362	-0.341768
3	6	0	-5.366437	-0.395631	0.811910
4	6	0	-3.995432	-0.575710	0.768521
5	6	0	-3.235628	-0.284247	-0.382204
6	6	0	-3.869781	0.208769	-1.517497
7	7	0	-3.159704	-1.048517	1.781313
8	6	0	-1.851157	-1.068744	1.371032
9	6	0	-1.840632	-0.527558	-0.032221
10	8	0	-0.920955	-1.543936	2.016844
11	6	0	-3.583614	-1.394871	3.115639
12	6	0	0.660048	-0.218972	-0.054413
13	6	0	-0.705892	-0.223247	-0.715465
14	6	0	0.160686	2.135169	-0.187963
15	6	0	1.301936	1.149155	-0.341459
16	1	0	-5.761488	0.767623	-2.368802
17	1	0	-7.063003	0.242331	-0.338643
18	1	0	-5.936137	-0.615976	1.708825
19	1	0	-3.305582	0.452132	-2.411362
20	1	0	-4.338807	-2.186803	3.085232
21	1	0	-3.994975	-0.515954	3.621769
22	1	0	-2.703811	-1.746592	3.655026
23	1	0	0.492773	-0.334468	1.016916
24	6	0	2.525627	1.470281	0.492462
25	6	0	3.744630	1.758934	-0.123441
26	6	0	2.451029	1.500827	1.891381
27	6	0	4.878617	2.043178	0.637479
----	---	---	-----------	-----------	-----------
28	1	0	3.793780	1.791452	-1.210270
29	6	0	3.581852	1.780233	2.650329
30	1	0	1.497355	1.319746	2.384020
31	6	0	4.801691	2.044611	2.026046
32	1	0	5.817467	2.272482	0.142208
33	1	0	3.510040	1.802749	3.733606
34	1	0	5.682058	2.266853	2.621162
35	1	0	1.564358	1.231939	-1.403170
36	6	0	-0.648012	2.056311	0.951352
37	7	0	-1.318021	1.826973	1.884347
38	6	0	0.002173	3.115543	-1.227912
39	8	0	0.751272	3.147563	-2.207324
40	6	0	-1.166617	4.080553	-1.141221
41	1	0	-1.945809	3.738781	-1.831225
42	1	0	-1.594230	4.149192	-0.138648
43	1	0	-0.836278	5.066006	-1.476387
44	6	0	2.309828	-1.257186	-1.684363
45	1	0	1.634195	-0.869997	-2.450836
46	1	0	3.057103	-0.495205	-1.454241
47	6	0	2.462899	-1.769420	0.709682
48	1	0	2.970803	-0.844866	0.981652
49	1	0	1.829210	-2.083006	1.544569
50	6	0	0.635112	-2.679414	-0.606231
51	1	0	-0.044718	-2.704939	0.247747
52	1	0	0.063701	-2.516490	-1.522281
53	7	0	2.932182	-3.546023	-0.952426
54	6	0	3.444833	-2.865490	0.236755
55	1	0	3.597962	-3.598288	1.033618
56	1	0	4.418355	-2.431023	-0.008966
57	6	0	2.955047	-2.609240	-2.075180
58	1	0	3.989910	-2.446098	-2.387807
59	1	0	2.422901	-3.067272	-2.913844
60	6	0	1.544748	-3.928079	-0.697632
61	1	0	1.197008	-4.581412	-1.502484

62	1	0	1.512283	-4.500336	0.233927
63	7	0	1.511575	-1.460490	-0.423205
64	6	0	-0.753280	0.133499	-2.104221
65	7	0	-0.734562	0.323256	-3.248989

4-TS_[2+1]

Zero-point correction=	0.538107 (Hartree/Particle)
Thermal correction to Energy=	0.570114
Thermal correction to Enthalpy=	0.571058
Thermal correction to Gibbs Free Ene	rgy= 0.472509
SCF Done: E(SOV) = -1546.5619151	0 A.U.

Center	Atomic Atomic		tomic	Coordinates (Angstroms)			
Number	Numb	er	Туре	X Y	Z		
1	6	0	5.303301	-0.266009	-1.748821		
2	6	0	6.092780	0.010672	-0.634669		
3	6	0	5.518917	0.273504	0.612511		
4	6	0	4.138219	0.253075	0.694752		
5	6	0	3.319401	-0.017548	-0.421263		
6	6	0	3.910834	-0.287010	-1.652705		
7	7	0	3.345343	0.482845	1.822161		
8	6	0	2.007838	0.397073	1.511381		
9	6	0	1.939748	0.014601	0.055436		
10	8	0	1.093283	0.663829	2.275526		
11	6	0	3.839013	0.846281	3.128884		
12	6	0	-0.553527	-0.276796	0.045871		
13	6	0	0.775315	-0.252528	-0.595554		
14	6	0	-0.724989	-2.349727	0.018964		
15	6	0	-1.584711	-1.209809	-0.486671		
16	1	0	5.773650	-0.469369	-2.704745		

17	1	0	7.173822	0.020957	-0.732074
18	1	0	6.132439	0.484130	1.482499
19	1	0	3.308606	-0.509695	-2.526220
20	1	0	4.403991	1.783011	3.081338
21	1	0	4.483208	0.056308	3.526715
22	1	0	2.973081	0.972937	3.779511
23	1	0	-0.526899	-0.151515	1.124090
24	6	0	-3.006754	-1.142964	0.012871
25	6	0	-4.047213	-1.235291	-0.915133
26	6	0	-3.325271	-1.041721	1.371669
27	6	0	-5.377164	-1.213563	-0.503882
28	1	0	-3.808247	-1.333343	-1.971721
29	6	0	-4.655023	-1.018621	1.783409
30	1	0	-2.536040	-0.993710	2.117499
31	6	0	-5.684673	-1.101641	0.848639
32	1	0	-6.170600	-1.289849	-1.241107
33	1	0	-4.884950	-0.944424	2.841880
34	1	0	-6.720016	-1.086752	1.174748
35	1	0	-1.554744	-1.272242	-1.579586
36	6	0	-0.695212	-2.685059	1.392773
37	7	0	-0.650817	-2.949679	2.526201
38	6	0	-0.060294	-3.211756	-0.951949
39	8	0	-0.146729	-3.010944	-2.157946
40	6	0	0.755708	-4.366600	-0.404370
41	1	0	1.552499	-3.993291	0.248098
42	1	0	0.132579	-5.032019	0.201010
43	1	0	1.187772	-4.917702	-1.239828
44	6	0	-1.972961	1.750178	-1.432450
45	1	0	-1.405538	1.348568	-2.278786
46	1	0	-2.841040	1.108267	-1.263636
47	6	0	-1.892635	2.079363	0.962725
48	1	0	-2.682395	1.343252	1.124723
49	1	0	-1.206859	2.045010	1.815390
50	6	0	0.029687	2.586402	-0.384921
51	1	0	0.685530	2.443568	0.477091

52	2 1	0	0.572847	2.297115	-1.289358
53	3 7	0	-1.958244	4.066708	-0.529722
54	4 6	0	-2.477673	3.500978	0.716110
55	5 1	0	-2.221558	4.175971	1.538370
56	5 1	0	-3.568952	3.464016	0.643352
57	7 6	0	-2.393273	3.233289	-1.651236
58	3 1	0	-3.480299	3.315089	-1.744826
59) 1	0	-1.949213	3.636734	-2.566395
60) 6	0	-0.498278	4.048581	-0.475063
61	l 1	0	-0.107883	4.545338	-1.368359
62	2 1	0	-0.182179	4.630754	0.395978
63	3 7	0	-1.118211	1.662858	-0.228063
64	4 6	0	0.799205	-0.333353	-2.034187
65	5 7	0	0.812368	-0.234757	-3.188435

4-TS_[3+2]

Zero-point correction=	0.541923 (Hartree/Particle)
Thermal correction to Energy=	0.571868
Thermal correction to Enthalpy=	0.572812
Thermal correction to Gibbs Free Ene	rgy= 0.482652
SCF Done: E(SOV) = -1546.5803076	66 A.U.

Center	Atomic		Atomic	Coordinate	es (Angstroms)
Number	Nurr	nber	Туре	X Y	Z
1	6	0	-4.602915	-2.045917	-1.031094
2	6	0	-5.509296	-1.299668	-0.283091
3	6	0	-5.076731	-0.380281	0.678783
4	6	0	-3.709931	-0.242135	0.854456
5	6	0	-2.783313	-0.974775	0.096286
6	6	0	-3.224344	-1.885009	-0.851605
7	7	0	-3.034619	0.588120	1.754942
8	6	0	-1.674598	0.455342	1.627736

9	6	0	-1.426112	-0.493646	0.459201
10	8	0	-0.849308	1.030420	2.318684
11	6	0	-3.660974	1.562579	2.616110
12	6	0	0.928680	-0.391596	0.473911
13	6	0	-0.256460	-1.306668	0.462537
14	6	0	-0.825955	0.877073	-0.820875
15	6	0	0.684411	0.674415	-0.688455
16	1	0	-4.967544	-2.755248	-1.766482
17	1	0	-6.574938	-1.432329	-0.443612
18	1	0	-5.783823	0.198404	1.264309
19	1	0	-2.514898	-2.445070	-1.452553
20	1	0	-4.329355	1.074266	3.332175
21	1	0	-4.225322	2.284464	2.017229
22	1	0	-2.864000	2.080985	3.149699
23	1	0	0.971718	0.161155	1.417769
24	6	0	1.484505	1.947806	-0.550132
25	6	0	2.345433	2.333678	-1.581601
26	6	0	1.426330	2.726958	0.611751
27	6	0	3.153987	3.460213	-1.453113
28	1	0	2.378672	1.743177	-2.495380
29	6	0	2.234623	3.852743	0.738552
30	1	0	0.736862	2.451795	1.408235
31	6	0	3.105374	4.218447	-0.286541
32	1	0	3.816317	3.746287	-2.264679
33	1	0	2.180439	4.451609	1.642642
34	1	0	3.734472	5.097068	-0.181283
35	1	0	0.965969	0.177302	-1.620418
36	6	0	-1.378320	2.156843	-0.463292
37	7	0	-1.890581	3.146718	-0.139465
38	6	0	-1.388584	0.297597	-2.077750
39	8	0	-0.808985	-0.625777	-2.625661
40	6	0	-2.699744	0.838159	-2.599173
41	1	0	-3.431485	0.960881	-1.794981
42	1	0	-2.534159	1.826389	-3.043130
43	1	0	-3.085166	0.154263	-3.356053

4	4 6	5	0	2.615309	-1.627806	-0.976557
4	5 1	1	0	1.725134	-2.086487	-1.408281
4	6 1	1	0	2.890845	-0.751385	-1.567857
4	7 (5	0	3.409898	-0.178995	0.805992
4	8 1	l	0	3.316274	0.746484	0.241370
4	9 1	l	0	3.258370	0.042377	1.865803
5	0 6	5	0	2.291256	-2.247126	1.404363
5	1	l	0	1.886022	-1.845185	2.335297
52	2	l	0	1.614024	-3.009708	1.026743
5	3 7	7	0	4.546562	-2.343339	0.400892
54	4 6	5	0	4.749686	-0.902069	0.526228
5	5 1	l	0	5.454243	-0.703203	1.338578
5	6	l	0	5.199141	-0.533546	-0.400757
5	7 (5	0	3.799019	-2.607820	-0.832209
5	8 1	l	0	4.466946	-2.506558	-1.692189
5	9 1	l	0	3.440599	-3.641141	-0.805248
6	0 6	5	0	3.734844	-2.780646	1.535860
6	1 1	l	0	3.717234	-3.873267	1.568186
6	2 1	l	0	4.212095	-2.427328	2.455095
6	3 7	7	0	2.281244	-1.103050	0.403315
6	4 6	5	0	-0.234652	-2.551781	-0.188086
6	5	7	0	-0.110735	-3.622605	-0.643050

10. NMR spectra and HPLC chromatograms

[8.129] [8.129] [7.708] [7.708] [7.708] [7.769] [7.564] [7.585] [7.566] [7.566] [7.566]

F₃C Ph

--0.002

S47

Peak	RetTime	Туре	Width	AI	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	%
1	7.116	VV MM	0.2725	6881. 264.	.36914	396. 15.	 31644 60132	96.2927

Peak	RetTime	Туре	Width	Αı	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	5.827	VV	0.1885	5829.	.83594	479.	25140	99.7147
2	7.071	MM	0.2319	16.	.67862	1.	19846	0.2853

-1.573

Peak	RetTime	Туре	Width	A	rea	Height		Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	5.401	MM	0.2737	6751	.68506	411.	19461	95.3871
2	6.340	MM	0.3041	326	.51120	17.	89628	4.6129

-1.570

S54

Peak	RetTime Type		Width	Area		Height		Area
#	[min]		[min]	mAU	*s	[mAU]	8
1	8.564	VV	0.5666	2274.	73853	58.	20887	4.9143
2	13.568	BB	0.7451	4.401	L34e4	909.	56244	95.0857

-1.536

---0.000

Peak	RetTime	Туре	Width	Aı	rea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	90
1	10.363	MM	0.5178	54.	.46294	1.	75305	1.9861
2	18.893	BB	0.6216	2687.	.75293	67.	52803	98.0139

-0.001

Peak	RetTime	Туре	Width	Ar	ea	Heig	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	010
1	5.225	VV	0.2049	1.046	60e4	744.3	15814	49.1123
2	6.066	VB	0.2604	1.084	44e4	685.0	03015	50.8877

Peak	RetTime	туре	Width	Area	Heigh	nt Area
#	[min]		[min]	mAU *s	[mAU] %
1	5.543	VV	0.2313	9835.908	20 641.36	5163 50.2076
2	6.366	VV	0.2644	9754.565	43 584.93	3188 49.7924

0

Peak RetTime Type

[min]

5.640 VV 6.527 VV

#

1 2 Width

Area

[min] mAU *s

----|----|

0.2364 210.49884 0.2746 4243.21875 Height

13.34438 241.79958

[mAU]

Area

%

4.7264 95.2736

] 🕺
670 50.3326
692 49.6674

Peak	RetTime	Туре	Width	Are	ea	Hei	ght	Area
#	[min]		[min]	mAU	*s	[mAU]	80
1	7.010	MM	0.3219	3186.6	54355	165.	00511	92.3195
2	8.027	MM	0.3280	265.1	1169	13.	47006	7.6805

Peak #	RetTime [min]	Туре	Width [min]	Area mAU *s	Height [mAU]	Area %
1	10.195	BV	0.6047	3.33298e4	846.93634	98.5213
2	12.323	VV	0.8172	500.24554	8.92203	1.4787

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	6.280	VV	0.3105	1406.95361	69.91431	3.9311
2	7.309	VB	0.2845	3.43837e4	1921.62354	96.0689

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	8
1	5.613	BBA	0.2485	1.08201e4	730.55878	96.1926
2	6.603	MM	0.2772	428.27133	25.74760	3.8074

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *.s	[mAU]	8
1	17.315	VV	0.6085	8463.36328	218.82716	47.7928
2	19.576	VB	0.6764	9245.08008	215.01561	52.2072

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	20
1	17.407	VV	0.6001	442.86618	11.66684	2.9182
2	19.605	VB	0.6721	1.47332e4	341.56509	97.0818

8.145 8.127 8.127 8.127 8.057 8.057 8.057 8.057 8.057 8.057 8.057 8.057 8.057 8.055 7.553 7.553 7.553 7.255</

Peak RetTime	Type	Width	Area	Height	Area
# [min]		[min]	mAU *s	[mAU]	8
1 6.839	MM	0.3454	2.04596e4	987.21710	99.6623
2 22.178	MM	0.3646	69.32738	3.16894	0.3377

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	mAU *s	[mAU]	olo
					-	
1	14.672	VB	0.8764	2.46990e4	443.81152	99.7754
2	40.312	MM	0.3097	55.6084	7 2.99256	0.2246

S104

-3.064

-0.001

