Metal ion-modulated self-assembly of pseudo-suit[3]anes using crown ether-based terpyridine metalloprisms

Yun-Chi Wang, Yen-Peng Liang, Jhen-Yu Cai, Yun-Jui He, Yin-Hsuan Lee, and Yi-Tsu Chan*

Table of Contents

Materials and methods	S2
Synthesis of ligand T	S3
¹ H and ¹³ C NMR spectra of ligand T	S4
MALDI-TOF-MS spectrum of ligand T	S5
Complexation reactions	S5
2D NMR spectra of $[Cd_6T_3]$	S7
2D NMR spectra of $[Zn_6T_3]$	S8
ESI-MS spectra of $[Cd_6T_3]$ and $[Zn_6T_3]$	S9
ESI-TWIM-MS plot of [Zn ₆ T ₃]	S12
Synthesis of TriG	S13
¹ H and ¹³ C NMR spectra of compounds 4 , 5 , 6 , 7 , and TriG	S16
ESI-MS spectrum of TriG	S21
Molecular modeling of [Cd ₆ T ₃]⊃ TriG	S21
Time-dependent ¹ H NMR spectra of the inclusion process of $[Cd_6T_3] \supset TriG$	S22
2D NMR spectra of [Cd ₆ T ₃]⊃ TriG	S22
ESI-MS spectra of [Cd ₆ T ₃]⊃TriG	S25
Binding constant of [Cd ₆ T ₃]⊃ TriG	S26
Decomplexation of $[Cd_6T_3] \supset TriG$	S26
Time-dependent ¹ H NMR spectra of the inclusion process of $[Zn_6T_3] \supset TriG$	S27
Synthesis and characterization of [Zn ₆ T ₃]⊃TriG	S28
Inclusion and transmetalation study	S30
Tandem mass spectrometry analysis	S34
References	S34

Materials and General Methods. Unless otherwise noted, reagents and solvents were received from Alfa Aesar, Sigma-Aldrich and used without further purification. Column chromatography was conducted using silica gel (75-200 μ m) from Fuji Silysia GS series and basic Al₂O₃ (50-200 μ m) from Acros. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Varian Mercury NMR 400 spectrometer, where chemical shifts (δ in ppm) were determined with respect to the nondeuterated solvents as a reference. The transmission electron microscope (TEM) images were recorded on a Hitachi Model H-7650 microscope operated at 120 kV or a JEOL EX-1200 microscope operated at 80 kV. TEM samples were prepared by drop-casting a sample solution (~10⁻⁸ M) onto a carbon-coated copper grid and dried *in vacuo* for 24 h.

Mass Spectrometry and Ion-Mobility Experiments. Mass spectrometry and traveling wave ion-mobility (TWIM) experiments were conducted on a Waters Synapt HDMS G2 with a LockSpray ESI source, using the same parameters in the literature.^[1] Data were collected and analyzed by using MassLynx 4.1 and DriftScope 2.4 (Waters). The experimental collision cross-sections (CCSs) were obtained according to the literature procedure.^[1] Matrix-assisted laser desorption/ionization coupled with time-of-flight detector (MALDI-TOF) mass spectrometry was conducted on a Bruker autoflex series spectrometer equipped with a nitrogen 337 nm laser. 1.0 µL of 2,5-dihydroxybenzoic acid (DHB) matrix solution (10 mg/mL in CH₃CN) was first deposited on a MALDI plate and air-dried. Aliquots of sample solution (1 mg/mL in CHCl₃) were then added onto the matrix spots for measurements.

Molecular Modeling. Energy-minimized structures were obtained following the same settings in the literature.^[2] Calculations were proceeded with Anneal and Geometry Optimization functions in Forcite module of Materials Studio version 7.0 program (Accelrys Software, Inc.). For each structure, 200 conformations after annealing were generated and converted to collision cross-sections using projection approximation (PA) and trajectory method (TM) in MOBCAL.^[3]

Synthesis of ligand **T**

4'-(4-Boronophenyl)-2,2':6',2"-terpyridine (1)^[4] and 4,4',5,5'tetrabromodibenzo[24]crown-8 (2)^[5] were synthesized according to the literature procedures.

Scheme S1. Synthesis of ligand **T**. *Reagents and conditions*: (a) $Pd(PPh_3)_4$, Na_2CO_3 , toluene/H₂O/*t*-BuOH (3:3:1, v/v/v), reflux.

4,4',5,5'-tetrakis[4-(4'-terpyridinyl)phenyl]dibenzo[24]crown-8 (T). To a degassed two-neck flask containing 2 (100.3 mg, 131.3 µmol), 1 (460.5 mg, 1.3 mmol), and Na_2CO_3 (138.0 mg, 1.3 mmol), a mixed solvent (70 mL) of toluene/H₂O/t-BuOH (3:3:1, v/v/v) was added. After being purged with N₂ for 30 min, Pd(PPh₃)₄ (58.3 mg, 50.5 μ mol) was added into the mixture, which was then refluxed for 2 days under N₂. After cooling to room temperature, the aqueous layer was extracted with CHCl₃. The combined organic extract was dried over Na₂SO₄ and then evaporated to dryness under reduce pressure. The residue was purified by flash column chromatography (basic Al₂O₃, CHCl₃) and then recrystallized from MeOH to give T as a brown solid (180.2 mg, 0.11 mmol) in 82% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.71 (s, 8H), 8.69–8.64 (m, 8H), 8.62 (d, J = 7.9Hz, 8H), 7.83 (td, J = 7.7 and 1.8 Hz, 8H), 7.80–7.75 (m, 8H), 7.32–7.26 (m, 16H), 7.03 (s, 4H), 4.29 (t, J = 4.2 Hz, 8H), 3.99 (t, J = 4.3 Hz, 8H), and 3.90 (s, 8H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.25, 155.80, 149.71, 149.04, 148.43, 142.05, 136.72, 136.30, 133.06, 130.43, 126.98, 123.65, 121.25, 118.73, 116.37, 71.37, 69.95, and 69.77. MALDI-TOF-MS: calcd. for $C_{108}H_{85}N_{12}O_8 [M+H]^+$: m/z = 1678.6647; found: 1678.6517 and calcd. for $C_{108}H_{84}N_{12}NaO_8 [M+Na]^+$: m/z = 1700.6466; found: 1700.6394.

¹H and ¹³C NMR spectra of ligand **T**

Fig. S1 ¹H NMR spectrum of T in CDCl₃.

Fig. S2 ¹³C NMR spectrum of T in CDCl₃.

Fig. S3 MALDI-TOF-MS spectrum of T.

Complexation Reactions

[Cd₆T₃]. To a stirred CHCl₃ solution (5 mL) of **T** (20.5 mg, 12.2 μmol), a MeOH solution (5 mL) of Cd(NO₃)₂·4H₂O (7.7 mg, 24.9 μmol) was added. A small amount of MeNO₂ was added in order to improve the solubility. After the mixture was stirred for 30 min at 25 °C, an excess amount of NH₄PF₆ (82.0 mg, 0.5 mmol) was added to precipitate the counterion-exchanged complex (PF₆⁻), and then the mixture was stirred for additional 30 min. The precipitate was filtered, washed with H₂O, and dried *in vacuo* to give [Cd₆T₃] (29.1 mg, 3.9 μmol) in 95% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.88 (s, 24H), 8.62 (d, *J* = 8.2 Hz, 24H), 8.08 (d, *J* = 8.4 Hz, 24H), 7.95 (d, *J* = 4.2 Hz, 24H), 7.81 (dt, *J* = 7.8 and 1.6 Hz, 24H), 7.55 (d, *J* = 8.3 Hz, 24H), 7.18 (s, 12H), 7.02 (dd, *J* = 7.4 and 5.8 Hz, 24H), 4.43 (t, *J* = 10.1 Hz, 12H), 4.27 (d, *J* = 9.5 Hz, 12H), 4.00–3.87 (m, 36H), and 3.72–3.67 (m, 12H). ESI-MS (*m*/*z*): 1717.0066 [M-4PF₆]⁴⁺ (calcd. *m*/*z* = 1717.0266), 1344.6158 [M-5PF₆]⁵⁺ (calcd. *m*/*z* = 1344.6284), 1096.3457 [M-6PF₆]⁶⁺ (calcd. *m*/*z* = 1096.3630), 919.0110 [M-7PF₆]⁷⁺ (calcd. *m*/*z* = 919.0306), 786.1445 [M-8PF₆]⁸⁺ (calcd. *m*/*z* = 786.0312), and 668.5806 [M-PF₅-9PF₆]⁹⁺ (calcd. *m*/*z* = 668.5873).

[**Zn₆T₃].** To a stirred CHCl₃ solution (10 mL) of **T** (41.0 mg, 24.5 μ mol), a MeOH solution (10 mL) of Zn(NO₃)₂·6H₂O (15.1 mg, 49.9 μ mol) was added. After the mixture was stirred for 30 min at 25 °C, an excess amount of NH₄PF₆ (159.4 mg, 1.0 mmol) was added to precipitate the counterion-exchanged complex (PF₆⁻), which was filtered,

washed with H₂O, and redissolved in MeCN (210 mL). After the solution was stirred at 70 °C for 3 days, the mixture was poured into Et₂O to precipitate the complex, which was filtered, washed with H₂O, and dried *in vacuo* to give [Zn₆**T**₃] (58.0 mg, 8.1 µmol) in 99% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.92 (s, 24H), 8.55 (d, J = 8.1 Hz, 24H), 8.12 (d, J = 8.3 Hz, 24H), 7.69 (d, J = 4.6 Hz, 24H), 7.65 (dt, J = 7.8 and 1.5 Hz, 24H), 7.57 (d, J = 8.2 Hz, 24H), 7.21 (s, 12H), 6.83 (dd, J = 7.0 and 5.4 Hz, 24H), 4.45 (t, J = 8.4 Hz, 12H), 4.29 (d, J = 9.0 Hz, 12H), 4.00–3.86 (m, 36H), and 3.72–3.68 (m, 12H). ESI-MS (*m*/*z*): 1646.2517 [M-4PF₆]⁴⁺ (calcd. *m*/*z* = 1646.3130), 1288.0162 [M-5PF₆]⁵⁺ (calcd. *m*/*z* = 1288.0592), 1049.1753 [M-6PF₆]⁶⁺ (calcd. *m*/*z* = 1049.2206), 878.5874 [M-7PF₆]⁷⁺ (calcd. *m*/*z* = 878.6216), 750.6469 [M-8PF₆]⁸⁺ (calcd. *m*/*z* = 750.6744), and 637.1447 [M-PF₅-9PF₆]⁹⁺ (calcd. *m*/*z* = 637.1625).

2D NMR spectra of $[Cd_6T_3]$

Fig. S4 COSY spectra of $[Cd_6T_3]$ in CD₃CN.

Fig. S5 DOSY spectrum of $[Cd_6T_3]$ in CD₃CN.

2D NMR spectra of $[Zn_6T_3]$

Fig. S7 DOSY spectrum of $[Zn_6T_3]$ in CD₃CN.

8.0

7.5

8.5

9.0

5.0

4.5

4.0

5.5

3.5

7.0 6.5 6.0 chemical shift (ppm)

ESI-MS spectra of $[Cd_6T_3]$ and $[Zn_6T_3]$

Fig. S9 ESI-MS spectrum of $[Zn_6T_3]$.

Fig. S10 Experimental and theoretical ESI-MS isotope patterns of $[Zn_6T_3]$.

ESI-TWIM-MS plot of $[Zn_6T_3]$

Fig. S11 ESI-TWIM-MS plot of [Zn₆**T**₃].

Table S1	Experimental	and theo	retical avera	age collision	cross-sections	of $[Cd_6T_3]$	and
$[Zn_6T_3].$							

Drift time (ms)	Exp. CCS (Å ²)	Exp. Avg. CCS (Å ²)	Calcd. Avg. CCS (Å ²)					
[Cd ₆ T ₃]								
12.46 (4+)	829.8							
8.60 (5+)	796.0		699.1±4.2 ^[a]					
6.50 (6+)	774.7	803.8±34.9	$829.0 \pm 15.1^{[b]}$					
5.29 (7+)	768.8							
5.07 (8+)	849.4							
$[Zn_6T_3]$								
12.13 (4+)	814.5							
8.38 (5+)	781.2		$688.1 \pm 4.1^{[a]}$					
6.28 (6+)	754.5	776.7±34.9	$814.3 \pm 14.8^{[b]}$					
4.96 (7+)	729.7							
4.74 (8+)	803.7							

^[a] PA and ^[b] TM values obtained by using MOBCAL.

Synthesis of TriG

[(6-Bromohexyl)oxy](*tert*-butyl)dimethylsilane (**3**) were synthesized according to the literature procedure.^[6]

Scheme S2 Synthesis of **TriG**. *Reagents and conditions*: (a) phloroglucinol, K₂CO₃, DMF, 90 °C; (b) TBAF, 0 °C; (c) TsCl, Et₃N, DCM, 0 °C; (d) 4-hydroxybenzaldehyde, K₂CO₃, MeCN, reflux; (e) 1) toluene, reflux, 2) NaBH₄, MeOH, 25 °C, 3) HCl_(aq), 25 °C, 4) NH₄PF_{6(aq)}, MeCN, 25 °C.

Compound 4. To a stirred solution of **3** (6.7 g, 22.5 mmol), phloroglucinol (0.9 g, 6.8 mmol), and potassium carbonate (4.2 g, 30.7 mmol), anhydrous DMF (20 mL) was added. The mixture was stirred at 90 °C for 12 h, then poured into NH₄Cl_(aq), and extracted with ethyl acetate. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (SiO₂, hexane/EtOAc = 10:1, v/v) to afford **4** as a colorless oil (4.1 g, 5.4 mmol) in 79% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.03 (s, 3H), 3.88 (t, *J* = 6.5 Hz, 6H), 3.59 (t, *J* = 6.5 Hz, 6H), 1.74 (m, 6H), 1.60–1.29 (m, 18H), 0.87 (s, 27H), and 0.03 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.89, 93.72, 67.88, 63.14, 32.75, 29.25, 25.98, 25.87, 25.60, 18.36, -5.24, and -5.27. ESI-MS: calcd. for C₄₂H₈₅O₆Si₃ [M+H]⁺: *m/z* = 769.5654; found: 769.5649.

Compound 5. To a THF solution (5 mL) of **4** (4.3 g, 5.6 mmol), a THF solution (1 M, 20 mL) of tetrabutylammonium fluoride was added at 0 °C. After the mixture was stirred at 25 °C for 12 h, the solvent was evaporated under reduced pressure and the residue was subjected to column chromatography (SiO₂, EtOAc) to give **5** as a colorless oil (2.4 g, 5.6 mmol) in 99% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 6.03 (s, 3H), 3.89 (t, *J* = 6.5 Hz, 6H), 3.64 (t, *J* = 6.6 Hz, 6H), 1.74 (m, 6H), and 1.65–1.33 (m, 18H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.82, 93.75, 67.79, 62.77, 32.60, 29.12, 25.82, and 25.45. ESI-MS: calcd. for C₂₄H₄₃O₆ [M+H]⁺: *m*/*z* = 427.3060; found: 427.3026.

Compound 6. To an anhydrous DCM solution (10 mL) of **5** (2.4 g, 5.6 mmol) and *p*-toluenesulfonyl chloride (4.8 g, 25.2 mmol), triethylamine (4.8 mL, 33.6 mmol) was added at 0 °C. After the mixture was stirred at 25 °C for 12 h, the mixture was poured into H₂O and extracted with CH₂Cl₂. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (SiO₂, hexane/EtOAc = 1:1, v/v) to give **6** as a yellow oil (2.2 g, 2.5 mmol) in 44% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77 (d, *J* = 7.8 Hz, 6H), 7.32 (d, *J* = 7.9 Hz, 6H), 5.99 (s, 3H), 4.01 (t, *J* = 6.4 Hz, 6H), 3.84 (t, *J* = 6.4 Hz, 6H), 2.42 (s, 9H), 1.66 (m, 12H), and 1.37 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 160.77, 144.65, 133.06, 129.78, 127.80, 93.68, 70.45, 67.57, 28.93, 28.70, 25.42, 25.10, and 21.58. ESI-MS: calcd. for C₄₅H₆₀O₁₂NaS₃ [M+Na]⁺: *m/z* = 911.3145; found: 911.3149.

Compound 7. To a flask containing **6** (1.4 g, 1.6 mmol), 4-hydroxybenzaldehyde (0.9 g, 7.1 mmol), and potassium carbonate (1.9 g, 14.1 mmol), anhydrous acetonitrile (20 mL) was added. The mixtures was refluxed for 36 h, then poured into NH₄Cl_(aq), and extracted with ethyl acetate. The combined organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The residue was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc = 20:1, v/v) to afford **7** as a yellow oil (1.1 g, 1.5 mmol) in 94% yield. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.86 (s, 3H), 7.80 (d, *J* = 8.3 Hz, 6H), 6.97 (d, *J* = 8.7 Hz, 6H), 6.04 (s, 3H), 4.03 (t, *J* = 6.4 Hz, 6H), 3.90 (t, *J* = 6.4 Hz, 6H), 1.80 (m, 12H), and 1.61–1.46 (m, 12H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.73, 164.10, 160.83, 131.92, 129.70, 114.67, 93.70, 68.16, 67.68, 29.08, 28.92, 25.78, and 25.70. ESI-MS: calcd. for C₄₅H₅₄O₉Na [M+Na]⁺: *m*/*z* = 761.3666; found: 761.3645.

Compound TriG. To a flask containing **7** (196.4 mg, 0.3 mmol) and benzylamine (85 mg, 0.8 mmol), anhydrous toluene (20 mL) was added. The mixture was refluxed for 12 h. After cooling to room temperature, the solvent was removed under reduced pressure. The residue was dissolved in a mixed solvent (20 mL) of CH₂Cl₂/MeOH (1:1, v/v). Subsequently, NaBH₄ (1.0 g, excess) was added into the mixture, which was stirred at 25 °C for 4 h. The reaction mixture was poured into H₂O and extracted with CH₂Cl₂. The combined organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue suspended in hydrochloric acid (37%, excess) was stirred at room temperature for 0.5 h. The white precipitate was filtered and washed with CH₂Cl₂ to give the white solid, which was suspended in MeCN (5 mL). Saturated NH₄PF_{6(aq)} was added into the suspension until the solid was totally dissolved. The solution was concentrated *in vacuo* and the precipitate was filtered and washed with H₂O to give **TriG** as a white solid (20.2 mg, 14.0 µmol) in 5% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm)

7.45 (s, 15H), 7.37 (d, J = 8.7 Hz, 6H), 6.95 (d, J = 8.7 Hz, 6H), 6.04 (s, 3H), 4.18 (s, 6H), 4.14 (s, 6H), 4.00 (t, J = 6.5 Hz, 6H), 3.92 (t, J = 6.5 Hz, 6H), 1.76 (m, 12H), and 1.50 (m, 12H). ¹³C NMR (100 MHz, CD₃CN): δ (ppm) 161.94, 160.98, 132.66, 131.76, 130.95, 130.49, 129.93, 123.30, 115.66, 94.56, 68.79, 68.64, 52.08, 51.95, 29.78, 29.72, 26.40, and 26.35. ESI-MS (m/z): 1304.7002 [M-PF₆]⁺ (calcd. m/z = 1304.5643), 1158.6903 [M-H-2PF₆]⁺ (calcd. m/z = 1158.5924), and 1012.6776 [M-2H-3PF₆]⁺ (calcd. m/z = 1012.6204).

6.03 3.386 6.03 3.387 3.388 3.386 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.389 3.3866 3.3866 3.3866 3.3866 3.3866 3.3866 3.3866 3.3866 3.3866 3.386

Fig. S13 ¹³C NMR spectrum of **4**.

Fig. S14 ¹H NMR spectrum of 5.

Fig. S15 ¹³C NMR spectrum of **5**.

Fig. S16 ¹H NMR spectrum of **6**.

Fig. S17 ¹³C NMR spectrum of 6.

Fig. S19¹³C NMR spectrum of 7.

Fig. S20 ¹H NMR spectrum of TriG.

Fig. S21 ¹³C NMR spectrum of TriG.

Fig. S22 ESI-MS spectrum of TriG.

Fig. S23 Energy-minimized structures of $[Cd_6T_3] \supset TriG$.

Fig. S24 Time-dependent ¹H NMR spectra of a mixture of $[Cd_6T_3]$ (0.8 mM) and **TriG** in a molar ratio of 1:1 at 25 °C.

2D NMR spectra of $[Cd_6T_3] \supset TriG$

Fig. S25 DOSY spectrum of $[Cd_6T_3] \supset$ **TriG** with excess **TriG** in CD₃CN.

Fig. S26 COSY spectra of $[Cd_6T_3] \supset$ **TriG**.

Fig. S27 ROESY spectra of $[Cd_6T_3] \supset$ **TriG** in CD₃CN.

Fig. S28 Experimental and theoretical ESI-MS isotope patterns of $[Cd_6T_3] \supset TriG$.

Binding constant of [Cd₆**T**₃]⊃**TriG**

Fig. S29 ¹H NMR spectra of the mixture of $[Cd_6T_3]$ (H) and **TriG** (G) at equilibrium in CD₃CN at 25 °C. The experiment was repeated three times, and "c" and "uc" denote the complexed and uncomplexed peaks of **TriG**, respectively.

Fig. S30 ¹H NMR spectra of a) $[Cd_6T_3]$, b) $[Cd_6T_3]$ **TriG** + DBU, and c) $[Cd_6T_3]$ **TriG**.

Fig. S31 Time-dependent ¹H NMR spectra of a mixture of $[Zn_6T_3]$ (0.8 mM) and **TriG** in a molar ratio of 1:1 at 25 °C.

Synthesis and characterization of [Zn₆T₃]⊃TriG

[Zn₆T₃]⊃TriG. To a flask containing [Zn₆T₃] (4.0 mg, 0.6 μmol), an MeCN solution (0.7 mL) of TriG (2.5 mg, 1.7 μmol) was added. The mixture was refluxed for 48 h, cooled to room temperature, and dried *in vacuo*. The residue was washed with MeOH several times, and then dried *in vacuo* to give [Zn₆T₃]⊃TriG (4.3 mg, 0.5 μmol) in 89% yield. ¹H NMR (400 MHz, CD₃CN): δ (ppm) 8.89 (s, 24H), 8.56 (d, *J* = 8.2 Hz, 24H), 8.10 (d, *J* = 8.4 Hz, 24H), 7.82 (d, *J* = 6.7 Hz, 6H), 7.73 (d, *J* = 4.2 Hz, 24H), 7.68–7.65 (m, 9H), 7.63 (dt, *J* = 8.0 and 1.4 Hz, 24H), 7.44 (d, *J* = 8.2 Hz, 24H), 7.14 (d, *J* = 7.5 Hz, 6H), 6.92 (dd, *J* = 7.0 and 5.4 Hz, 24H), 6.80 (s, 12H), 6.42 (d, *J* = 8.0 Hz, 6H), 4.90–4.85 (m, 6H), 4.76–4.71 (m, 6H), 4.47 (t, *J* = 9.0 Hz, 12H), 4.24 (s, 3H), 4.09–4.04 (m, 24H), 3.97–3.81 (m, 36H), 3.62–3.54 (m, 6H), and 2.77–2.68 (m, 6H). ESI-MS (*m*/*z*): 2008.9843 [M-4PF₆]⁴⁺ (calcd. *m*/*z* = 2008.9452), 1577.9901 [M-5PF₆]⁵⁺ (calcd. *m*/*z* = 1578.1633), 1291.0007 [M-6PF₆]⁶⁺ (calcd. *m*/*z* = 1290.9753), 1085.8601 [M-7PF₆]⁷⁺ (calcd. *m*/*z* = 1085.8412), 931.8813 [M-8PF₆]⁸⁺ (calcd. *m*/*z* = 931.9905), 812.3367 [M-9PF₆]⁹⁺ (calcd. *m*/*z* = 812.3289), and 716.6113 [M-10PF₆]¹⁰⁺ (calcd. *m*/*z* = 716.5995).

Fig. S32 a) ¹H NMR and b) ESI-MS spectra of $[Zn_6T_3] \supset$ **TriG**.

Fig. S33 Experimental and theoretical ESI-MS isotope patterns of $[Zn_6T_3]$ \supset TriG.

Inclusion and transmetalation study

Sample preparation:

¹<u>H NMR</u>: To a sample vial containing $[Zn_6T_3]$ (4.0 mg, 0.6 µmol) and $[Cd_6T_3]$ (4.2 mg, 0.6 µmol), 0.7 mL CD₃CN was added. The solution was mixed thoroughly and settled at 25 °C for ¹H NMR measurement at different mixing timeframes. To study the effect of **TriG**, an CD₃CN solution (0.7 mL) of **TriG** (1.2 mg, 0.8 µmol) was added instead.

Fig. S34 Time-dependent ¹H NMR spectra of an equimolar mixture of $[Zn_6T_3]$ and $[Cd_6T_3]$.

<u>ESI-MS</u>: By using a similar procedure, two MeCN mixtures (with and without **TriG**) containing an equimolar amount of $[Zn_6T_3]$ and $[Cd_6T_3]$ were prepared. 50 µL of the mixture was taken and diluted 5 times with MeCN for ESI-MS measurement at different mixing timeframes.

Data analysis:

<u>ESI-MS</u>: The TOF intensities of all $[M-6PF_6]^{6+}$ ions, including $[Cd_6T_3]^{6+}$, $[ZnCd_5T_3]^{6+}$, $[Zn_2Cd_4T_3]^{6+}$, $[Zn_3Cd_3T_3]^{6+}$, $[Zn_4Cd_2T_3]^{6+}$, $[Zn_5CdT_3]^{6+}$ and $[Zn_6T_3]^{6+}$, were measured for each sampling. It was found that $[ZnCd_5T_3]^{6+}$ and $[Zn_2Cd_4T_3]^{6+}$ were the two primary species in the absence of **TriG** after mixing for 40 h (Fig. S36a), so their relative intensities were normalized against all the 6+ ions. In the presence of **TriG**, the TOF

intensities of the inclusion complexes, including $[Cd_6T_3]^{6+} \supset TriG$, $[ZnCd_5T_3]^{6+} \supset TriG$, $[Zn_2Cd_4T_3]^{6+} \supset TriG$, $[Zn_3Cd_3T_3]^{6+} \supset TriG$, $[Zn_4Cd_2T_3]^{6+} \supset TriG$, $[Zn_5CdT_3]^{6+} \supset TriG$, and $[Zn_6T_3]^{6+} \supset TriG$, were measured and taken into account for normalization. Normalized intensities of the selected 6+ were then plotted against mixing time (Fig. S37).

Fig. S35 ESI-MS spectrum of an equimolar mixture of $[Zn_6T_3]$ and $[Cd_6T_3]$ after mixed with **TriG** for 40 h. The major species are $[Zn_6T_3]$ and $[Cd_6T_3] \supset$ **TriG**.

Fig. S36 Partial ESI-MS spectra of two MeCN mixtures (a) without and (b) with **TriG**, containing $[Zn_6T_3]$ and $[Cd_6T_3]$ (1:1) after mixing for 40 h.

Fig. S37 ESI-MS trace plots of normalized intensities for the 6+ ions vs. mixing time (a) without and (b-c) with **TriG**.

Tandem mass spectrometry analysis

Fig. S38 Normalized intensities for $[Cd_6T_3]^{8+}$ and $\{[Cd_6T_3]\supset TriG\}^{8+}$ as a function of trap voltage and their corresponding center-of-mass collision energies (*E*_{cm}).

References

- [1] Y.-P. Liang, Y.-J. He, Y.-H. Lee, Y.-T. Chan, *Dalton Trans.*, 2015, 44, 5139.
- [2] Y.-T. Chan, X. Li, J. Yu, G. A. Carri, C. N. Moorefield, G. R. Newkome, C. Wesdemiotis, J. Am. Chem. Soc., 2011, 133, 11967.
- [3] (a) A. A. Shvartsburg, M. F. Jarrold, *Chem. Phys. Lett.*, 1996, 261, 86; (b) M. F.
 Mesleh, J. M. Hunter, A. A. Shvartsburg, G. C. Schatz, M. F. Jarrold, *J. Phys. Chem.*, 1996, 100, 16082.
- [4] A. Schultz, Y. Cao, M. Huang, S. Z. Cheng, X. Li, C. N. Moorefield, C. Wesdemiotis, G. R. Newkome, *Dalton Trans.*, 2012, 41, 11573.
- [5] M. Kaller, P. Staffeld, R. Haug, W. Frey, F. Giesselmann, S. Laschat, *Liq. Cryst.*, 2011, **38**, 531.
- [6] M. R. Uehling, A. M. Suess, G. Lalic, J. Am. Chem. Soc., 2015, 137, 1424.