Electronic Supplementary Information

Carborane-incorporated mononuclear Co(II) complex showing zero-field slow magnetic relaxation

Deshuang Tu, Dong Shao, Hong Yan* and Changsheng Lu*

Table of Contents

- I General method
- II Synthesis
- **III** X-ray structure determination
- **IV** Magnetic properties measurements
- **V** References

I. General method

All reactions were carried out under an argon atmosphere. 1,2-dithiol-*o*-carborane ^{s1} and compound **2** were synthesized according to literature process. The starting material CoCl₂·6H₂O were purchased from Aldrich. IR spectra were measured with KBr pellets using a Bruker Vector 22 FT-IR spectrometer in 4000–400 cm⁻¹ range. Elemental analyses for C, H, and N were performed on a Vario MICRO elemental analyzer. Powder X-ray diffraction (PXRD) data were recorded on a Bruker D8 ADVANCE X-ray powder diffractometer (Cu-K α) over the 2 θ range of 5° to 40° at room temperature. Magnetic susceptibility measurements were performed in temperature range 1.8–300 K using a vibrating sample magnetometer (VSM) of Quantum Design MPMS SQUID-VSM system. The diamagnetic contribution of the sample itself was estimated from Pascal's constant.

II. Synthesis

Scheme S1 Preparation of target Co(II) complex 1.

Synthesis of complex 1: 1,2- dithiol-o-carborane (124.8 mg, 0.6 mmol) and CoCl2^{.6}H2O (68.3 mg, 0.25 mmol)

were dissolved in 20 mL mixed solvents (CH₂Cl₂ 10 mL, CH₃OH 10 mL). Then, 1 mL NEt₃ was added to the above solution at room temperature. The color of the reaction mixture was changed immediately. Then diethyl ether (40 mL) was added and the resulting green precipitate was filtered and washed. Yield: 151.6 mg (90%). Recrystallization in CH₂Cl₂ and CH₃CN under N₂ atmosphere gave green crystals of complex 1 (suitable for X-ray diffraction). Yield: 101.1 mg (60%). Anal. Calcd (%) for C₂₂H₅₂B₂₀CoN₂S₄: C, 28.43; H, 7.75; N, 4.14. Found: C, 28.36; H, 7.71; N, 4.05. IR (KBr pellet, cm⁻¹): 2517 (B–H).

III. X-ray structure determination

Single crystal X-ray crystallographic data were collected on a Bruker APEX II or APEX Duo diffractometer with a CCD area detector (Mo-K α radiation, $\lambda = 0.71073$ Å). APEXII program was used to determine the unit cell parameters and for data collection. The data were integrated and corrected for Lorentz and polarization effects using SAINT. Absorption corrections were applied with SADABS. The structures were solved by direct method and refined by full-matrix least-squares method on F² using the SHELXTL crystallographic software package. All the non-hydrogen atoms were refined anisotropically. Hydrogen atoms of the organic ligands were refined as riding on the corresponding non-hydrogen atoms. Additional details of data collections and structural refinement parameters are provided in Table S1. CCDC-1495750 (1) and CCDC-196006 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data request/cif.

Table S1. Crystallographic data and structure refinement parameters for 1

Empirical formula	C16 H52 B20 Co N2 S4		
Formula weight	675.96		
Temperature	123(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pna21		
Unit cell dimensions	a = 36.4636(15) Å	α= 90°.	
	b = 9.9056(4) Å	β=90°.	
	c = 9.9210(4) Å	$\gamma = 90^{\circ}$.	
Volume	3583.4(3) Å ³		
Z	4		
Density (calculated)	1.253 Mg/m ³		
Absorption coefficient	0.728 mm ⁻¹		
F(000)	1412		
Crystal size	0.280 x 0.260 x 0.240 mm ³		
Theta range for data collection	2.056 to 27.609°.		
Index ranges	-45<=h<=47, -12<=k<=12, -12<=l<=12		
Reflections collected	32643		
Independent reflections	8168 [R(int) = 0.0578]		
Completeness to theta = 25.008°	99.9 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	8168 / 14 / 397		
Goodness-of-fit on F ²	1.019		
Final R indices [I>2sigma(I)]	R1 = 0.0458, wR2 = 0.1076		
R indices (all data)	R1 = 0.0549, wR2 = 0.1123		
Largest diff. peak and hole	0.905 and -0.484 e.Å ⁻³		

Fig. S1 Powder X-ray diffraction pattern of complex 1 at room temperature with the calculated pattern.

Fig. S2 The asymmetric unit of complex 1. All hydrogen atoms are omitted for clarity.

IV. Magnetic property measurements

Fig. S3 Reduced magnetization data for **1** collected in the temperature range of 2–10 K under various applied dc fields of 1–7 T.

Fig. S4 Variable-frequency out-of phase $(\chi M'')$ ac magnetic susceptibility data for **1** in different dc field (*Hac* = 2 Oe).

Fig. S5 Variable-temperature (a) and variable-frequency (b) out-of phase (χ_M) ac magnetic susceptibility data for 1 at zero dc field (*Hac* = 2 Oe).

Fig. S6. Variable-temperature ((a), (b)) and variable-frequency ((c), (d)) ac magnetic susceptibility data for **1** under a 1000 Oe dc field (Hac = 2 Oe).

Fig. S7 Arrhenius plot of $ln(\tau)$ vs T^{-1} for 1. Solid line represents a fit to the high temperature region.

Fig. S8. Power law analysis in the form $ln(\tau)$ vs ln(T).

T/K	Xs	Xt	τ	α
1.9	0.19634	1.20747	0.00255	0.29995
2	0.18852	1.15079	0.00267	0.29988
2.3	0.15681	0.97222	0.00237	0.29922
2.6	0.13937	0.87832	0.00249	0.29616
2.9	0.12207	0.75725	0.00224	0.2921
3.2	0.10622	0.70399	0.00228	0.29736
3.5	0.1025	0.62709	0.00205	0.28896
3.8	0.09327	0.59976	0.00219	0.29646
4.1	0.07969	0.56118	0.00203	0.29688
4.4	0.08495	0.52878	0.00209	0.27672
4.7	0.06577	0.49831	0.00174	0.28461
5	0.05573	0.46688	0.00158	0.28715
5.2	0.07147	0.44292	0.0014	0.23332
5.7	0.07616	0.39089	0.00101	0.14161
6.2	0.10047	0.38677	0.00119	0.29936
6.6	0.06312	0.33913	6.00E-04	0.1976
7.1	0.0658	0.31167	4.50E-04	0.06936
7.6	0.06165	0.29481	3.60E-04	0.09839
8.1	0.07687	0.27646	2.90E-04	0.00372
8.6	0.06065	0.26251	2.30E-04	0.06564
9	0.07855	0.2591	2.00E-04	0.01349
9.5	0.06511	0.24507	1.50E-04	0.18801
10	0.10168	0.22802	1.40E-04	0.06662

Table S2. Relaxation fitting parameters from the least-square fitting of the Cole-Cole plots of 1 according to the generalized Debye model.

Fig. S9 Magnetic hysteresis loops of 1 under various field sweep rates at 1.8 K.

V. Reference

- S1. Nicolas P. E. Barry, Thomas F. Kemp, Peter J. Sadler and John V. Hanna, Dalton. Trans., 2014, 43, 4945.
- S2. Katerřina Mrkvová , Jiří Kameníček, Zdeněk Šindelář and Libor Kvítek, Transition Met. Chem., 2004, 29, 238.
- S3. SAINT Software Users Guide, version 7.0; Bruker Analytical XRay Systems: Madison, WI, 1999.
- S4. G. M. Sheldrick, SADABS, version 2.03; Bruker Analytical X-RaySystems, Madison, WI, 2000.
- S5. G. M. Sheldrick, SHELXTL, Version 6.14, Bruker AXS, Inc.; Madison, WI, 2000-2003.