Supporting Information

A chemical proteomic probe for detecting native carrier

protein motifs in nonribosomal peptide synthetases

Shota Kasai,^a Fumihiro Ishikawa,^{a*} Takehiro Suzuki,^b Naoshi Dohmae,^b and Hideaki Kakeya^{a*}

^aDepartment of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto, 606-8501, Japan ^bGlobal Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

*Correspondence and request for materials should be directed via email to

Fumihiro Ishikawa (fishika@pharm.kyoto-u.ac.jp) or Hideaki Kakeya (scseigyo-hisyo@pharm.kyoto-u.ac.jp).

Contents:	Page
Supplementary Figure S1	S3
Supplementary Figure S2	S3
Supplementary Figure S3	S4
Supplementary Figure S4	S4
Supplementary Figure S5	S5
Supplementary Figure S6	S6
Supplementary Figure S7	S6
Supplementary Figure S8	S8
Supplementary Figure S9	S10
Supplementary Figure S10	S11–13
Supplementary Figure S11	S14–16
Supplementary Figure S12	S17–19
Supplementary Figure S13	S19
Supplementary Figure S14	S20
Supplementary Scheme S1	S21
Supplementary Scheme S2	S21
General methods	S21–31
References	S31–33
Copies of ¹ H-NMR and ¹³ C-NMR spectra	S34–41
Supplementary Figure S15	
Supplementary Figure S16	

Supplementary Figure S17

Figure S1. Full gel displaying the purification of native Sfp. Gel lanes depict fractions taken during anion exchange chromatography and as follows: L1 = 10 mM NaCl wash, L2 = 50 mM NaCl wash, L3-L8 = 100 mM NaCl wash. The target protein was collected and used from L3–L6. The gel was stained with Coomassie (Colloidal Coomassie Blue Stain).

Figure S2. Full gel displaying the purification of CoaA (PanK)-MBP. Gel lanes depict fractions taken during amylose affinity chromatography and as follows: L1 = flow through and L2-L11 = 10 mM maltose wash. The target protein was collected and used from L2-L8. The gel was stained with Coomassie (Colloidal Coomassie Blue Stain).

Figure S3. Full gel displaying the purification of CoaD (PPAT)-MBP. Gel lanes depict fractions taken during amylose affinity chromatography and as follows: L1 = flow through, L2-L11 = 10 mM maltose wash. The target protein was collected and used from L2-L5. The gel was stained with Coomassie (Colloidal Coomassie Blue Stain).

Figure S4. Full gel displaying the purification of CoaE (DPCK)-MBP. Gel lanes depict fractions taken during amylose affinity chromatography and as follows: L1 = flow through, L2-L11 = 10 mM maltose wash. The target protein was collected and used from L2-L6. The gel was stained with Coomassie (Colloidal Coomassie Blue Stain).

Figure S5. Verification of the high conversion from apo- to holo-CPs of AusA1 and AusA2 with the rhodamine (Rh) pantetheine analog S12 by a one-pot chemoenzymatic method. (a) Attachment of Rh-Ppant analog to apo- and holo-AusA1 using CoaA (PanK), CoaD (PPAT), CoaE (DPCK), and Sfp. Reagents and enzymes were added to 50-µL reaction mixtures in sequential order as follows. Final reaction concentrations: 50 mM potassium phosphate (pH 7.0), 8 mM ATP, 15 mM MgCl₂, 0.002 µg/µL CoaA-MBP, 0.01 µg/µL CoaD-MBP, 0.02 µg/µL CoaE-MBP, 0.01 µg/µL Sfp (native), 0.04 µg/µL apo- or holo-AusA1 (350 nM), and 500 µM Rh-Ppant analog. (b) Attachment of Rh-Ppant analog S12 to apo- and holo-AusA2 using CoaA, CoaD, CoaE, and Sfp. Reagents and enzymes were added to 50-µL reaction mixtures in sequential order as follows. Final reaction concentrations: 50 mM potassium phosphate (pH 7.0), 8 mM ATP, 15 mM MgCl₂, 0.002 µg/µL CoaA-MBP, 0.01 µg/µL CoaD-MBP, 0.02 µg/µL CoaE-MBP, 0.01 µg/µL Sfp (native), 0.04 µg/µL apo- or holo-AusA2 (350 nM), and 500 µM Rh-Ppant analog S12. In negative controls, the Rh-Ppant analog S12 was replaced with DMSO. These reaction mixtures were incubated for 1 h at 37 °C. For each panel, the image (Φ) denotes the fluorescence observed with $\lambda_{ex} = 532$ nm and $\lambda_{ex} = 580$ nm and the image (Σ) depicts total protein content by staining with Coomassie (Colloidal Coomassie Blue Stain).

Figure S6. A Structure of TAMRA-azide detection reagent used in this study.

Figure S7. Measurements of labeled recombinant *holo*-AusA1. Fluorescent and Coomassie stained SDS-PAGE gel of Rh-BSA, a standard for fluorescent intensity and recombinant *holo*-AusA1 with probe 1. Recombinant *holo*-AusA1 (1 μ M) was reacted with probe 1 (1–100 μ M) in either the absence or presence of 1 mM *L*-Val-AMS 2 for 12 h at 25 °C. Gel lanes are as follows: L1 = 50 nM Rh-BSA, L2 = 100 nM Rh-BSA, L3 = 200 nM Rh-BSA, L4 = 400 nM

Rh-BSA, L5 = 600 nM Rh-BSA, L6 = 800 nM Rh-BSA, L7 = 1000 nM Rh-BSA, L8 = 1200 nM Rh-BSA, L9 = 1 μ M *holo*-AusA1 and 1 μ M probe **1**, L10 = 1 μ M *holo*-AusA1, 1 μ M probe **1**, and 1 mM *L*-Val-AMS **2**, L11 = 1 μ M *holo*-AusA1 and 10 μ M probe **1**, L12 = 1 μ M *holo*-AusA1, 10 μ M probe **1**, and 1 mM *L*-Val-AMS **2**, L13 = 1 μ M *holo*-AusA1 and 20 μ M probe **1**, L14 = 1 μ M *holo*-AusA1, 20 μ M probe **1**, and 1 mM *L*-Val-AMS **2**, L15 = 1 μ M *holo*-AusA1 and 50 μ M probe **1**, L16 = 1 μ M *holo*-AusA1, 50 μ M probe **1**, and 1 mM *L*-Val-AMS **2**, L17 = 1 μ M *holo*-AusA1 and 100 μ M probe **1**, L18 = 1 μ M *holo*-AusA1, 100 μ M probe **1**, and 1 mM *L*-Val-AMS **2**, L17 = 580 nm and the image (Φ) denotes the fluorescence observed with λ_{ex} = 532 nm and λ_{ex} = 580 nm and the image (Σ) depicts total protein content by staining with Coomassie (Colloidal Coomassie Blue Stain).

Figure S8. MALDI-TOF mass spectra of Asp-N digestion of modified AusA1. (a) Theunmodifiedholo-AusA1fragmentwithsequenceDNFFELGGHS(Ppant)LKATLVVNRIEASTGKRLQIG (D932-G962 + Ppant):[D932-G962 +Ppant + H]⁺ calcd for 3710.9088, found, 3711.097; modified peptide fragment with sequenceDNFFELGGHS*LKATLVVNRIEASTGKRLQIG (D932-G962 + Ppant + 1):[D932-G962 +Ppant + 1 + H]⁺ calcd for 4204.1195, found, 4204.026. In addition, these unidentified peaksshow background peaks. (b) Structures of the unmodified and mofified peptide fragments.

Figure S9. Nonribosomal synthesis of the surfactin. Modules are comprised of CP (CP1–CP7), A (A1–A7) [A1, *L*-Glu; A2, *L*-Leu; A3, *L*-Leu; A4, *L*-Val; A5, *L*-Asp; A6, *L*-Leu; A7, *L*-Leu specific A-domains], E, C, and TE domains. The target A and CP domains for probe **1** are colored blue.

1	MSKKSIQKVY	ALTPMQEGML	YHAMLDPHSS	SYFTQLELGI	HGAFDLEIFE
51	KSVNELIRSY	DILRTVFVHQ	QLQKPR QVVL	AERK <mark>TKVHYE</mark>	DISHADENRQ
101	KEHIERYKQD	VQRQGFNLAK	DILFKVAVFR	LAADQLYLVW	SNHHIMMDGW
151	SMGVLMK <mark>SLF</mark>	QNYEALR AGR	TPANGQGKPY	SDYIKWLGKQ	DNEEAESYWS
201	ERLAGFEQPS	VLPGRLPVKK	DEYVNKEYSF	TWDETLVARI	QQTANLHQVT
251	GPNLFQAVWG	IVLSKYNFTD	DVIFGTVVSG	RPSEINGIET	MAGLFINTIP
301	VRVKVERDAA	FADIFTAVQQ	HAVEAERYDY	VPLYEIQKR <mark>S</mark>	ALDGNLLNHL
351	VAFENYPLDQ	ELENGSMEDR	LGFSIKVESA	FEQTSFDFNL	IVYPGK TWTV
401	KIKYNGAAFD	SAFIERTAEH	LTRMMEAAVD	QPAAFVREYG	LVGDEEQRQI
451	VEVFNSTKAE	LPEGMAVHQV	FEEQAK <mark>R</mark> TPA	STAVVYEGTK	LTYR <mark>ELNAAA</mark>
501	NR LARKLVEH	GLQK <mark>GETAAI</mark>	MNDRSVETVV	GMLAVLKAGA	AYVPLDPALP
551	GDRLRFMAED	SSVRMVLIGN	SYTGQAHQLQ	VPVLTLDIGF	EESEAADNLN
601	LPSAPSDLAY	IMYTSGSTGK	PKGVMIEHKS	ILRLVK <mark>NAGY</mark>	VPVTEEDRMA
651	QTGAVSFDAG	TFEVFGALLN	GAALYPVKKE	TLLDAKQFAA	FLR EQSITTM
701	WLTSPLFNQL	AAKDAGMFGT	LR HLIIGGDA	LVPHIVSKVK	QASPSLSLWN
751	GYGPTENTTF	STSFLIDREY	GGSIPIGKPI	GNSTAYIMDE	QQCLQPIGAP
801	GELCVGGIGV	ARGYVNLPEL	TEKQFLEDPF	RPGERIYRTG	DLARWLPDGN
851	IEFLGRIDNQ	VKVRGFRIEL	GEIETKLNMA	EHVTEAAVII	RK NKADENEI
901	CAYFTADREV	AVSELRKTLS	QSLPDYMVPA	HLIQMDSLPL	TPNGKINKKE
951	LPAPQSEAVQ	PEYAAPKTES	EKKLAEIWEG	ILGVKAGVTD	NFFMIGGHSL
1001	KAMMMTAKIQ	EHFHKEVPIK	VLFEKPTIQE	LALYLEENES	KEEQTFEPIR
1051	QASYQQHYPV	SPAQRRMYIL	NQLGQANTSY	NVPAVLLLEG	EVDKDRLENA
1101	IQQLINRHEI	LRTSFDMIDG	EVVQTVHKNI	SFQLEAAKGR	EEDAEEIIKA
1151	FVQPFELNRA	PLVRSKLVQL	EEKRHLLLID	MHHIITDGSS	TGILIGDLAK
1201	IYQGADLELP	QIHYKDYAVW	HKEQTNYQKD	EEYWLDVFKG	ELPILDLPAD
1251	FERPAERSFA	GERVMFGLDK	QITAQIKSLM	AETDTTMYMF	LLAAFNVLLS
1301	KYASQDDIIV	GSPTAGRTHP	DLQGVPGMFV	NTVALRTAPA	GDKTFAQFLE
1351	EVKTASLQAF	EHQSYPLEEL	IEKLPLTRDT	SRSPLFSVMF	NMQNMEIPSL
1401	RLGDLKISSY	SMLHHVAKFD	LSLEAVEREE	DIGLSFDYAT	ALFKDETIRR
1451	WSRHFVNIIK	AAAANPNVRL	SDVDLLSSAE	TAALLEERHM	TQITEATFAA
1501	LFEKQAQQTP	DHSAVK <mark>AGGN</mark>	LLTYRELDEQ	ANQLAHHLRA	QGAGNEDIVA
1551	IVMDRSAEVM	VSILGVMKAG	AAFLPIDPDT	PEERIRYSLE	DSGAKFAVVN
1601	ERNMTAIGQY	EGIIVSLDDG	KWRNESKERP	SSISGSRNLA	YVIYTSGTTG
1651	KPKGVQIEHR	NLTNYVSWFS	EEAGLTENDK	TVLLSSYAFD	LGYTSMFPVL
1701	LGGGELHIVQ	KETYTAPDEI	AHYIKEHGIT	YIKLTPSLFH	TIVNTASFAK

1751	DANFESLRLI	VLGGEKIIPT	DVIAFR <mark>KMYG</mark>	HTEFINHYGP	TEATIGAIAG
1801	R VDLYEPDAF	AKRPTIGRPI	ANAGALVLNE	ALKLVPPGAS	GQLYITGQGL
1851	ARGYLNRPQL	TAERFVENPY	SPGSLMYKTG	DVVRRLSDGT	LAFIGRADDQ
1901	VKIR GYRIEP	KEIETVMLSL	SGIQEAVVLA	VSEGGLQELC	AYYTSDQDIE
1951	KAELRYQLSL	TLPSHMIPAF	FVQVDAIPLT	ANGKTDR <mark>NAL</mark>	PKPNAAQSGG
2001	K ALAAPETAL	EESLCRIWQK	TLGIEAIGID	DNFFDLGGHS	LKGMMLIANI
2051	QAELEK SVPL	KALFEQPTVR	QLAAYMEASA	VSGGHQVLKP	ADKQDMYPLS
2101	SAQKRMYVLN	QLDRQTISYN	MPSVLLMEGE	LDISRLRDSL	NQLVNRHESL
2151	RTSFMEANGE	PVQRIIEKAE	VDLHVFEAKE	DEADQKIKEF	IRPFDLNDAP
2201	LIRAALLRIE	AKKHLLLLDM	HHIIADGVSR	GIFVKELALL	YKGEQLPEPT
2251	LHYKDFAVWQ	NEAEQKERMK	EHEAYWMSVL	SGELPELDLP	LDYARPPVQS
2301	FKGDTIRFRT	GSETAKAVEK	LLAETGTTLH	MVLHAVFHVF	LSKISGQRDI
2351	VIGSVTAGRT	NADVQDMPGM	FVNTLALRME	AKEQQTFAEL	LELAK <mark>QTNLS</mark>
2401	ALEHQEYPFE	DLVNQLDLPR	DMSRNPLFNV	MVTTENPDKE	QLTLQNLSIS
2451	PYEAHQGTSK	FDLTLGGFTD	ENGIGLQLEY	ATDLFAKETA	EKWSEYVLRL
2501	LKAVADNPNQ	PLSSLLLVTE	TEKQALLEAW	KGKALPVPTD	K TVHQLFEET
2551	VQRHKDRPAV	TYNGQSWTYG	ELNAKANRLA	RILMDCGISP	DDRVGVLTKP
2601	SLEMSAAVLG	VLKAGAAFVP	IDPDYPDQRI	EYILQDSGAK	LLLKQEGISV
2651	PDSYTGDVIL	LDGSRTILSL	PLDENDEGNP	ETAVTAENLA	YMIYTSGTTG
2701	QPKGVMVEHH	ALVNLCFWHH	DAFSMTAEDR	SAKYAGFGFD	ASIWEMFPTW
2751	TIGAELHVID	EAIRLDIVRL	NDYFETNGVT	ITFLPTQLAE	QFMELENTSL
2801	RVLLTGGDKL	KRAVKKPYTL	VNNYGPTENT	VVATSAEIHP	EEGSLSIGRA
2851	IANTRVYILG	EGNQVQPEGV	AGELCVAGRG	LARGYLNRED	ETAKRFVADP
2901	FVPGERMYRT	GDLVKWVNGG	IEYIGRIDQQ	VKVR <mark>GYRIEL</mark>	SEIEVQLAQL
2951	SEVQDAAVTA	VKDK GGNTAI	AAYVTPETAD	IEALKSTLKE	TLPDYMIPAF
3001	WVTLNELPVT	ANGKVDRKAL	PEPDIEAGSG	EYKAPTTDME	ELLAGIWQDV
3051	LGMSEVGVTD	NFFSLGGDSI	KGIQMASRLN	QHGWKLEMKD	LFQHPTIEEL
3101	TQYVERAEGK	QADQGPVEGE	VILTPIQRWF	FEKNFTNKHH	WNQSVMLHAK
3151	KGFDPERVEK	TLQALIEHHD	ALRMVYREEN	GDIVQVYKPI	GESKVSFEIV
3201	DLYGSDEEML	RSQIKLLANK	LQSSLDLRNG	PLLKAEQYR <mark>T</mark>	EAGDHLLIAV
3251	HHLVVDGVSW	RILLEDFASG	YMQAEKEESL	VFPQKTNSFK	DWAEELAAFS
3301	QSAHLLQQAE	YWSQIAAEQV	SPLPK DCETE	QRIVKDTSSV	LCELTAEDTK
3351	HLLTDVHQPY	GTEINDILLS	ALGLTMKEWT	KGAK <mark>IGINLE</mark>	GHGREDIIPN
3401	VNISRTVGWF	TAQYPVVLDI	SDADASAVIK	TVKENLR <mark>RIP</mark>	DKGVGYGILR
3451	YFTETAETKG	FTPEISFNYL	GQFDSEVKTD	FFEPSAFDMG	RQVSGESEAL
3501	YALSFSGMIR	NGRFVLSCSY	NEKEFERATV	EEQMERFKEN	LLMLIRHCTE
3551	KEDKEFTPSD	FSAEDLEMDE	MGDIFDMLEE	NLK	

Figure S10. Compiled MS/MS data of gel excised fluorescent SrfAB (##) **bands from the** *B. subtilis* **ATCC 21332 proteome.** Amino acids of the identified peptides are colored either red or blue. The overlapped peptide sequences are colored green.

1	MEITFYPLTD	AQKRIWYTEK	FYPHTSISNL	AGIGKLVSAD	AIDYVLVEQA
51	IQEFIRRNDA	MRLRLRLDEN	GEPVQYISEY	RPVDIKHTDT	TEDPNAIEFI
101	SQWSREETKK	PLPLYDCDLF	RFSLFTIKEN	EVWFYANVHH	VISDGISMNI
151	LGNAIMHIYL	ELASGSETKE	GISHSFIDHV	LSEQEYAQSK	RFEKDKAFWN
201	KQFESVPELV	SLK RNASAGG	SLDAER <mark>FSK</mark> D	VPEALHQQIL	SFCEANKVSV
251	LSVFQSLLAA	YLYRVSGQND	VVTGTFMGNR	TNAK <mark>EKQMLG</mark>	MFVSTVPLRT
301	NIDGGQAFSE	FVKDRMKDLM	KTLRHQKYPY	NLLINDLRET	KSSLTKLFTV
351	SLEYQVMQWQ	KEEDLAFLTE	PIFSGSGLND	VSIHVKDRWD	TGKLTIDFDY
401	R TDLFSREEI	NMICERMITM	LENALTHPEH	TIDELTLISD	AEKEK LLARA
451	GGKSVSYR <mark>KD</mark>	MTIPELFQEK	AELLSDHPAV	VFEDRTLSYR	TLHEQSARIA
501	NVLKQKGVGP	DSPVAVLIER	SERMITAIMG	ILKAGGAYVP	IDPGFPAERI
551	QYILEDCGAD	FILTESKVAA	PEADAELIDL	DQAIEEGAEE	SLNADVNARN
601	LAYIIYTSGT	TGRPKGVMIE	HRQVHHLVES	LQQTIYQSGS	QTLRMALLAP
651	FHFDASVKQI	FASLLLGQTL	YIVPKKTVTN	GAALTAYYRK	NSIEATDGTP
701	AHLQMLAAAG	DFEGLKLKHM	LIGGEGLSSV	VADKLLKLFK	EAGTAPRLTN
751	VYGPTETCVD	ASVHPVIPEN	AVQSAYVPIG	KALGNNRLYI	LDQK <mark>GRLQPE</mark>
801	GVAGELYIAG	DGVGRGYLHL	PELTEEKFLQ	DPFVPGDRMY	RTGDVVRWLP
851	DGTIEYLGRE	DDQVKVRGYR	IELGEIEAVI	QQAPDVAKAV	VLARPDEQGN
901	LEVCAYVVQK	PGSEFAPAGL	REHAAR <mark>QLPD</mark>	YMVPAYFTEV	TEIPLTPSGK
951	VDRRKLFALE	VKAVSGTAYT	APRNETEKAI	AAIWQDVLNV	EKAGIFDNFF
1001	ETGGHSLKAM	TLLTKIHKET	GIEIPLQFLF	EHPTITALAE	EADHRESKAF
1051	AVIEPAEKQE	HYPLSLAQQR	TYIVSQFEDA	GVGYNMPAAA	ILEGPLDIQK
1101	LERAFQGLIR	RHESLRTSFV	LENSTPRQKI	HDSVDFNIEM	IERGGRSDEA
1151	IMASFVRTFD	LAK APLFR <mark>IG</mark>	LLGLEENRHM	LLFDMHHLIS	DGVSIGIMLE
1201	ELARIYKGEQ	LPDLRLQYKD	YAVWQSRQAA	EGYKKDQAYW	KEVFAGELPV
1251	LQLLSDYPRP	PVQSFEGDRV	SIKLDAGVKD	RLNRLAEQNG	ATLYMVMLSA
1301	YYTLLSKYTG	QDDIIVGTPS	AGRNHSDTEG	IIGMFVNTLA	IRSEVKQNET
1351	FTQLISRVRK	RVLDAFSHQD	YPFEWLVEDL	NIPRDVSRHP	LFDTMFSLQN
1401	ATEGIPAVGD	LSLSVQETNF	KIAKFDLTVQ	ARETDEGIEI	DVDYSTKLFK
1451	QSTADRLLTH	FARLLEDAAA	DPEKPISEYK	LLSEEEAASQ	IQQFNPGRTP
1501	YPKDKTIVQL	FEEQAANTPD	HTALQYEGES	LTYRELNERA	NRLARGILSL
1551	GAGEGRTAAV	LCERSMDMIV	SILAVLKSGS	AYVPIDPEHP	IQRMQHFFRD
1601	SGAKVLLTOR	KLKALAEEAE	FKGVIVLADE	EESYHADARN	LALPLDSAAM
1651	ANLTYTSGTT	GTPKGNIVTH	ANILRTVKET	NYLSITEQDT	ILGLSNYVFD
1701	AFMFDMFGSL	LNGAKLVLIP	KETVLDMARL	SRVIERENIS	ILMITTALFH

1751	LLVDLNPACL	STLRKIMFGG	ERASVEHVRK	ALQTVGKGKL	LHMYGPSEST
1801	VFATYHPVDE	LEEHTLSVPI	GKPVSNTEVY	ILDRTGHVQP	AGIAGELCVS
1851	GEGLVK <mark>GYYN</mark>	RPELTEEKFV	PHPFTSGERM	YKTGDLAR <mark>WL</mark>	PNGDIEFIGR
1901	IDHQVKIRGQ	RIELGEIEHQ	LQTHDRVQES	VVLAVDQGAG	DK LLCAYYVG
1951	EGDISSQEMR	EHAAK <mark>DLPAY</mark>	MVPAVFIQMD	ELPLTGNGKI	DRRALPIPDA
2001	NVSRGVSYVA	PR NGTEQKVA	DIWAQVLQAE	QVGAYDHFFD	IGGHSLAGMK
2051	MLALVHQELG	VELSLKDLFQ	SPTVEGLAQV	IASAEKGTAA	SISPAEKQDT
2101	YPVSSPQKRM	YVLQQLEDAQ	TSYNMPAVLR	LTGELDVERL	NSVMQQLMQR
2151	HEALRTTFEI	KDGETVQRIW	EEAECEIAYF	EAPEEETERI	VSEFIKPFKI
2201	DQLPLFRIGL	IKHSDTEHVL	LFDMHHIISD	GASVGVLIEE	LSKLYDGETL
2251	EPLR IQYKDY	AVWQQQFIQS	ELYKKQEEHW	LKELDGELPV	LTLPTDYSRP
2301	AVQTFEGDR <mark>I</mark>	AFSLEAGKAD	ALRRLAKETD	STLYMVLLAS	YSAFLSK <mark>ISG</mark>
2351	QDDIIVGSPV	AGRSQADVSR	VIGMFVNTLA	LRTYPKGEKT	FADYLNEVKE
2401	TALSAFDAQD	YPLEDLIGNV	QVQRDTSRNP	LFDAVFSMQN	ANIKDLTMKG
2451	IQLEPHPFER	KTAKFDLTLT	ADETDGGLTF	VLEYNTALFK	QETIERWKQY
2501	WMELLDAVTG	NPNQPLSSLS	LVTETEKQAL	LEAWKGK <mark>ALP</mark>	VPTDKTVHQL
2551	FEETAQRHKD	RPAVTYNGQS	WTYGELNAKA	NRLARILMDC	GISPDDR <mark>VGV</mark>
2601	LTKPSLEMSA	AVLGVLKAGA	AFVPIDPDYP	DQRIEYILQD	SGAKLLLKQE
2651	GISVPDSYTG	DVILLDGSRT	ILSLPLDEND	EENPETAVTA	ENLAYMIYTS
2701	GTTGQPKGVM	VEHHALVNLC	FWHHDAFSMT	AEDRSAKYAG	FGFDASIWEM
2751	FPTWTIGAEL	HVIEEAIRLD	IVRLNDYFET	NGVTITFLPT	QLAEQFMELE
2801	NTSLRVLLTG	GDKLKRAVKK	PYTLVNNYGP	TENTVVATSA	EIHPEEGSLS
2851	IGRAIANTRV	YILGEGNQVQ	PEGVAGELCV	AGRGLARGYL	NREDETAKRF
2901	VADPFVPGER	MYRTGDLVKW	TGGGIEYIGR	IDQQVKVR <mark>GY</mark>	RIELSEIEVQ
2951	LAQLSEVQDA	AVTAVKDKGG	NTAIAAYVTP	ESADIEALKS	ALKETLPDYM
3001	IPAFWVTLNE	LPVTANGKVD	RKALPEPDIE	AGSGEYKAPT	TDMEELLAGI
3051	WQDVLGMSEV	GVTDNFFSLG	GDSIKGIQMA	SRLNQHGWKL	EMKDLFQHPT
3101	IEELTQYVER	AEGKQADQGP	VEGEVILTPI	QRWFFEKNFT	NKHHWNQSVM
3151	LHAKKGFDPE	RVEKTLQALI	EHHDALRMVY	REGQEDVIQY	NRGLEAASAQ
3201	LEVIQIEGQA	ADYEDRIERE	AERLQSSIDL	QEGGLLKAGL	FQAEDGDHLL
3251	LAIHHLVVDG	VSWRILLEDF	AAVYTQLEQG	NEPVLPQKTH	SFAEYAERLQ
3301	DFANSKAFLK	EKEYWRQLEE	QAVAAKLPKD	RESGDQRMKH	TKTIEFSLTA
3351	EETEQLTTKV	HEAYHTEMND	ILLTAFGLAM	KEWTGQDRVS	VHLEGHGREE
3401	IIEDLTISRT	VGWFTSMYPM	VLDMKHADDL	GYQLKQMKED	IR HVPNKGVG
3451	YGILR <mark>YLTAP</mark>	EHKEDVAFSI	QPDVSFNYLG	QFDEMSDAGL	FTRSELPSGQ
3501	SLSPETEKPN	ALDVVGYIEN	GKLTMSLAYH	SLEFHEKTVQ	TFSDSFKAHL
3551	LRIIEHCLSO	DGTELTPSDL	GDDDLTLDEL	DKLMEIF	

Figure S11. Compiled MS/MS data of gel excised SrfAA (#) bands from the *B. subtilis* ATCC 21332 proteome. Amino acids of the identified peptides are colored either red or blue. The overlapped peptide sequences are colored green.

1	MSKKSIQKVY	ALTPMQEGML	YHAMLDPHSS	SYFTQLELGI	HGAFDLEIFE
51	KSVNELIRSY	DILRTVFVHQ	QLQKPR QVVL	AERKTKVHYE	DISHADENRQ
101	KEHIERYKQD	VQRQGFNLAK	DILFKVAVFR	LAADQLYLVW	SNHHIMMDGW
151	SMGVLMK <mark>SLF</mark>	QNYEALR AGR	TPANGQGKPY	SDYIKWLGKQ	DNEEAESYWS
201	ERLAGFEQPS	VLPGRLPVKK	DEYVNKEYSF	TWDETLVARI	QQTANLHQVT
251	GPNLFQAVWG	IVLSKYNFTD	DVIFGTVVSG	RPSEINGIET	MAGLFINTIP
301	VRVKVER <mark>DAA</mark>	FADIFTAVQQ	HAVEAERYDY	VPLYEIQKR <mark>S</mark>	ALDGNLLNHL
351	VAFENYPLDQ	ELENGSMEDR	LGFSIK <mark>VESA</mark>	FEQTSFDFNL	IVYPGK TWTV
401	KIKYNGAAFD	SAFIERTAEH	LTRMMEAAVD	QPAAFVREYG	LVGDEEQRQI
451	VEVFNSTKAE	LPEGMAVHQV	FEEQAKRTPA	STAVVYEGTK	LTYRELNAAA
501	NR LARKLVEH	GLQKGETAAI	MNDRSVETVV	GMLAVLKAGA	AYVPLDPALP
551	GDRLRFMAED	SSVRMVLIGN	SYTGQAHQLQ	VPVLTLDIGF	EESEAADNLN
601	LPSAPSDLAY	IMYTSGSTGK	PKGVMIEHKS	ILRLVK <mark>NAGY</mark>	VPVTEEDRMA
651	QTGAVSFDAG	TFEVFGALLN	GAALYPVKKE	TLLDAKQFAA	FLREQSITTM
701	WLTSPLFNQL	AAKDAGMFGT	LR HLIIGGDA	LVPHIVSKVK	QASPSLSLWN
751	GYGPTENTTF	STSFLIDREY	GGSIPIGKPI	GNSTAYIMDE	QQCLQPIGAP
801	GELCVGGIGV	ARGYVNLPEL	TEKQFLEDPF	RPGERIYRTG	DLARWLPDGN
851	IEFLGR IDNQ	VKVRGFRIEL	GEIETKLNMA	EHVTEAAVII	RK NKADENEI
901	CAYFTADREV	AVSELRKTLS	QSLPDYMVPA	HLIQMDSLPL	TPNGKINKKE
951	LPAPQSEAVQ	PEYAAPKTES	EKKLAEIWEG	ILGVKAGVTD	NFFMIGGHSL
1001	KAMMMTAKIQ	EHFHKEVPIK	VLFEKPTIQE	LALYLEENES	KEEQTFEPIR
1051	QASYQQHYPV	SPAQRRMYIL	NQLGQANTSY	NVPAVLLLEG	EVDKDRLENA
1101	IQQLINRHEI	LRTSFDMIDG	EVVQTVHKNI	SFQLEAAKGR	EEDAEEIIKA
1151	FVQPFELNRA	PLVR <mark>SKLVQL</mark>	EEKRHLLLID	MHHIITDGSS	TGILIGDLAK
1201	IYQGADLELP	QIHYKDYAVW	HKEQTNYQKD	EEYWLDVFKG	ELPILDLPAD
1251	FERPAERSFA	GERVMFGLDK	QITAQIK <mark>SLM</mark>	AETDTTMYMF	LLAAFNVLLS
1301	KYASQDDIIV	GSPTAGRTHP	DLQGVPGMFV	NTVALRTAPA	GDKTFAQFLE
1351	EVKTASLQAF	EHQSYPLEEL	IEKLPLTRDT	SRSPLFSVMF	NMQNMEIPSL
1401	RLGDLKISSY	SMLHHVAKFD	LSLEAVEREE	DIGLSFDYAT	ALFKDETIRR
1451	WSRHFVNIIK	AAAANPNVRL	SDVDLLSSAE	TAALLEERHM	TQITEATFAA
1501	LFEK QAQQTP	DHSAVK <mark>AGGN</mark>	LLTYRELDEQ	ANQLAHHLRA	QGAGNEDIVA
1551	IVMDRSAEVM	VSILGVMKAG	AAFLPIDPDT	PEERIRYSLE	DSGAKFAVVN
1601	ERNMTAIGQY	EGIIVSLDDG	KWRNESKERP	SSISGSRNLA	YVIYTSGTTG
1651	KPKGVQIEHR	NLTNYVSWFS	EEAGLTENDK	TVLLSSYAFD	LGYTSMFPVL
1701	LGGGELHIVQ	KETYTAPDEI	AHYIKEHGIT	YIKLTPSLFH	TIVNTASFAK

1751	DANFESLRLI	VLGGEKIIPT	DVIAFR <mark>KMYG</mark>	HTEFINHYGP	TEATIGAIAG
1801	R VDLYEPDAF	AKRPTIGRPI	ANAGALVLNE	ALKLVPPGAS	GQLYITGQGL
1851	AR GYLNRPQL	TAERFVENPY	SPGSLMYKTG	DVVRRLSDGT	LAFIGRADDQ
1901	VKIRGYRIEP	KEIETVMLSL	SGIQEAVVLA	VSEGGLQELC	AYYTSDQDIE
1951	KAELRYQLSL	TLPSHMIPAF	FVQVDAIPLT	ANGKTDRNAL	PKPNAAQSGG
2001	K ALAAPETAL	EESLCRIWQK	TLGIEAIGID	DNFFDLGGHS	LKGMMLIANI
2051	QAELEKSVPL	KALFEQPTVR	QLAAYMEASA	VSGGHQVLKP	ADKQDMYPLS
2101	SAQKRMYVLN	QLDRQTISYN	MPSVLLMEGE	LDISRLRDSL	NQLVNRHESL
2151	RTSFMEANGE	PVQRIIEKAE	VDLHVFEAKE	DEADQKIKEF	IRPFDLNDAP
2201	LIRAALLRIE	AKKHLLLLDM	HHIIADGVSR	GIFVKELALL	YKGEQLPEPT
2251	LHYKDFAVWQ	NEAEQKERMK	EHEAYWMSVL	SGELPELDLP	LDYARPPVQS
2301	FKGDTIRFRT	GSETAKAVEK	LLAETGTTLH	MVLHAVFHVF	LSKISGQRDI
2351	VIGSVTAGRT	NADVQDMPGM	FVNTLALRME	AKEQQTFAEL	LELAK <mark>QTNLS</mark>
2401	ALEHQEYPFE	DLVNQLDLPR	DMSRNPLFNV	MVTTENPDKE	QLTLQNLSIS
2451	PYEAHQGTSK	FDLTLGGFTD	ENGIGLQLEY	ATDLFAKETA	EKWSEYVLRL
2501	LKAVADNPNQ	PLSSLLLVTE	TEKQALLEAW	KGKALPVPTD	KTVHQLFEET
2551	VQRHKDRPAV	TYNGQSWTYG	ELNAKANRLA	RILMDCGISP	DDRVGVLTKP
2601	SLEMSAAVLG	VLKAGAAFVP	IDPDYPDQRI	EYILQDSGAK	LLLKQEGISV
2651	PDSYTGDVIL	LDGSRTILSL	PLDENDEGNP	ETAVTAENLA	YMIYTSGTTG
2701	QPKGVMVEHH	ALVNLCFWHH	DAFSMTAEDR	SAKYAGFGFD	ASIWEMFPTW
2751	TIGAELHVID	EAIRLDIVRL	NDYFETNGVT	ITFLPTQLAE	QFMELENTSL
2801	RVLLTGGDKL	KRAVKKPYTL	VNNYGPTENT	VVATSAEIHP	EEGSLSIGRA
2851	IANTRVYILG	EGNQVQPEGV	AGELCVAGRG	LARGYLNRED	ETAKRFVADP
2901	FVPGERMYRT	GDLVKWVNGG	IEYIGRIDQQ	VKVR <mark>GYR</mark> IEL	SEIEVQLAQL
2951	SEVQDAAVTA	VKDKGGNTAI	AAYVTPETAD	IEALKSTLKE	TLPDYMIPAF
3001	WVTLNELPVT	ANGKVDRKAL	PEPDIEAGSG	EYK APTTDME	ELLAGIWQDV
3051	LGMSEVGVTD	NFFSLGGDSI	KGIQMASRLN	QHGWKLEMKD	LFQHPTIEEL
3101	TQYVERAEGK	QADQGPVEGE	VILTPIQRWF	FEKNFTNKHH	WNQSVMLHAK
3151	KGFDPERVEK	TLQALIEHHD	ALRMVYREEN	GDIVQVYKPI	GESKVSFEIV
3201	DLYGSDEEML	R SQIKLLANK	LQSSLDLRNG	PLLKAEQYRT	EAGDHLLIAV
3251	HHLVVDGVSW	RILLEDFASG	YMQAEKEESL	VFPQKTNSFK	DWAEELAAFS
3301	QSAHLLQQAE	YWSQIAAEQV	SPLPKDCETE	QRIVKDTSSV	LCELTAEDTK
3351	HLLTDVHQPY	GTEINDILLS	ALGLTMKEWT	KGAKIGINLE	GHGREDIIPN
3401	VNISR TVGWF	TAQYPVVLDI	SDADASAVIK	TVKENLRRIP	DKGVGYGILR
3451	YFTETAETK G	FTPEISFNYL	GQFDSEVKTD	FFEPSAFDMG	RQVSGESEAL
3501	YALSFSGMIR	NGRFVLSCSY	NEKEFERATV	EEQMER <mark>FKEN</mark>	LLMLIRHCTE
3551	KEDKEFTPSD	FSAEDLEMDE	MGDIFDMLEE	NLK	

Figure S12. Compiled MS/MS data of gel excised fluorescent protein (###, SrfAB) bands from the *B. subtilis* ATCC 21332 proteome. Amino acids of the identified peptides are colored either red or blue. The overlapped peptide sequences are colored green.

Figure S13. Full images of SDS-PAGE gels from Figure 3. Labeling of recombinant *holo*-AusA1 with probe 1. (a) SDS-PAGE analysis depicting the labeling of 350 nM *apo*- and *holo*-AusA1 in 20 mM Tris (pH 8.0) for 12 h at 25 °C in either the absence, presence, of 1 mM *L*-Val-AMS 2. (b) Determination of an optimal pH for the labeling of *holo*-AusA1. *holo*-AusA1 (350 nM) was incubated with 100 μ M probe 1 in 20 mM Tris (pH 6.5–8.5) for 12 h at 25 °C in either the absence, or presence, of 1 mM 2. (c) Concentration dependence of *in vitro* probe labeling of *holo*-AusA1. *holo*-AusA1 (350 nM) was reacted with 10–100 μ M probe 1 for 12 h at

25 °C in either the absence, or presence, of 1 mM 2. (d) Time-course study of the labeling of *holo*-AusA1 with probe 1. SDS-PAGE analysis denoting the labeling of 350 nM *holo*-AusA1 in 20 mM Tris (pH 8.0) for 0.5–12 h at 25 °C with 100 μ M probe 1. (e) Labeling specificity of probe 1. *holo*-AusA1 (350 nM), *holo*-AusA2 (350 nM), and *holo*-TycB1 (350 nM) were treated with 100 μ M probe 1 in either the absence, or presence, of 1 mM of inhibitors 2, 3, and 4. For each panel, the image (Φ) denotes the fluorescence observed with $\lambda_{ex} = 532$ nm and $\lambda_{ex} = 580$ nm and the image (Σ) depicts total protein content by staining with Coomassie (Colloidal Coomassie Blue Stain). (a) Full image for gel in Fig. 3a. (b) Full image for gel in Fig. 3b. (c) Full image for gel in Fig. 3c. (d) Full image for gel in Fig. 3d. (e) Full image for gel in Fig. 3e.

Figure S14. Full images of SDS-PAGE gels from Figure 4. Proteomic investigations using probe 1. Investigation of the selective labeling of the CP4 domain of SrfAB using a combination of probe 1 and inhibitors 2, 5, and 6. The *B. subtilis* ATCC 21332 proteome (2.0 mg/mL) was individually preincubated with inhibitors 2, 5, and 6 (10 μ M) and reacted with 100 μ M 1 for 2 h at 25 °C. For each panel, the image (Φ) denotes the fluorescence observed with $\lambda_{ex} = 532$ nm and $\lambda_{ex} = 580$ nm and the image (Σ) depicts total protein content by staining with Coomassie (Colloidal Coomassie Blue Stain). Full image for gel in Fig. 4b.

Chemical Synthetic Procedures

Scheme S1. Synthetic route to probe 1. *Reagents and conditions*: [a] NaH, S1, DMF, 7.1%; [b] TBSCl, imidazole, CH₂Cl₂, rt, 81%; [c] TCA, THF, H₂O, rt, 75%; [d] S7, DEAD, Ph₃P, THF, rt, 74%; [e] NaH, S6, DMF, CH₂Cl₂, rt, 33%; [f] 1) TFA, CH₂Cl₂, 0 °C; 2) TBAF, THF, rt, 98%, over two steps.

Scheme S2. Synthetic route to a rhodamine pantetheine analog S12. *Reagents and conditions*: [a] S10, EDC, HOBt, DMF, rt, 95%; [b] 1) TFA, CH₂Cl₂, rt; 2) Rh-OSu, DIEA, DMF, 18%, over two steps.

General Synthetic	Methods:	All commercial	reagents	were used as	provided unless	otherwise
indicated.	S1 , ¹	S5 , ²	S6 ³ ,	S9 , ⁴	S10 ⁵ ,	and

4-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-N-(4-methoxypyridin-2-yl)piperazine-1-carbothioa mide (ML267)⁶ are known compounds. These compounds were prepared according to published literature procedures. All reactions were carried out under an atmosphere of nitrogen in dry solvents with oven-dried glassware and constant magnetic stirring unless otherwise noted. High performance liquid chromatography (HPLC) was performed on a Prominence CBM-20A (Shimadzu) system equipped with a Prominence SPD-20A UV/VIS detector (Shimadzu). ¹H-NMR spectra were recorded at 500 MHz. ¹³C-NMR spectra were recorded at 125 MHz on JEOL NMR spectrometers and standardized to the NMR solvent signal as reported by Gottlieb.⁷ Multiplicities are given as s = singlet, d = doublet, t = triplet, dd = doublet of doublets, dt =doublet of triplets, br = broad signal, m = multiplet using integration and coupling constant in Hertz. TLC analysis was performed using Silica Gel 60 F254 plates (Merck) and visualization was accomplished with ultraviolet light ($\lambda = 254$ nm) and/or the appropriate stain [phosphomolybdic acid, iodine, ninhydrin, and potassium permanganate]. Silica gel chromatography was carried out with SiliaFlash F60 230-400 mesh (Silicycle), according to the method of Still.⁸ Mass spectral data were obtained using a LCMS-IT-TOF mass spectrometer (Shimadzu).

Chemical Synthesis of 1 Compound number in bold refers to the structures shown in Scheme S1.

(2*R*,3*R*,4*R*,5*R*)-5-(6-Amino-9*H*-purin-9-yl)-2-(hydroxymethyl)-4-(pent-4-yn-1-yloxy)tetrah ydrofuran-3-ol (S2)

NaH (2.2 g of a 60% suspension in mineral oil, 56.1 mmol) was added to a solution of adenosine (10 g, 37.4 mmol) in DMF (150 mL). The solution was stirred at room temperature for 1 h and compound **S1** (7.4 g, 45.6 mmol) was added. After 3 days, the reaction was quenched by the addition of H₂O and the DMF and H₂O were removed at reduced pressure. The residue was purified by flash chromatography (CHCl₃ to 19:1 CHCl₃/MeOH) and HPLC [COSMISIL C₁₈-AR-II: C-18 reverse-phase column, ϕ 10 mm × 250 mm, MeOH/H₂O (30:70), 8.0 mL/min, 210 nm, t_R : 34.0 min] to afford compound **S2** as a white solid (900 mg, 7.1%). ¹H NMR (500 MHz, CD₃OD): δ 8.35 (s, 1H), 8.19 (s, 1H), 6.06 (d, *J* = 6.5 Hz, 1H), 4.54 (dd, *J* = 6.5, 5.0 Hz, 1H), 4.45 (dd, *J* = 5.0, 2.5 Hz, 1H), 4.17 (dd, *J* = 5.5, 2.5 Hz, 1H), 3.89 (dd, *J* =

13.0, 3.0 Hz, 1H), 3.76 (dd, J = 13.0, 3.0 Hz, 1H), 3.73–3.68 (m, 1H), 3.57–3.49 (m, 1H), 2.21–2.09 (m, 2H), 2.07 (t, J = 3.0 Hz, 1H), 1.77–1.58 (m, 2H). ¹³C NMR (125 MHz, CD₃OD): δ 157.6, 153.6, 150.0, 141.9, 121.0, 89.4, 88.6, 84.1, 83.3, 71.2, 70.3, 69.7, 63.3, 29.6, 15.5. HRMS (ESI+): [M+H]⁺ calcd for C₁₅H₂₀N₅O₄, 334.1510; found 334.1508.

9-((2*R*,3*R*,4*R*,5*R*)-4-((*tert*-Butyldimethylsilyl)oxy)-5-(((*tert*-butyldimethylsilyl)oxy)methyl)-3-(pent-4-yn-1-yloxy)tetrahydrofuran-2-yl)-9*H*-purin-6-amine (S3)

TBSCl (2.4 g, 15.9 mmol) and imidazole (2.2 g, 32.3 mmol) were added to a solution of compound **S2** (870 mg, 2.61 mmol) in CH₂Cl₂ (150 mL). The solution was stirred at room temperature. After 19 h, the reaction mixture was diluted with EtOAc. The mixture was washed with a 0.1 M aqueous HCl solution, saturated NaHCO₃, and brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The residue was purified by flash chromatography (1:1.5 EtOAc/hexane) to afford compound **S3** as a white solid (1.2 g, 81%). ¹H NMR (500 MHz, CDCl₃): δ 8.35 (s, 1H), 8.23 (s, 1H), 6.14 (d, *J* = 4.1 Hz, 1H), 5.95 (s, 2H), 4.50 (t, *J* = 4.9 Hz, 1H), 4.28 (t, *J* = 4.3 Hz, 1H), 4.12 (dt, *J* = 5.3, 2.9 Hz, 1H), 4.00 (dd, *J* = 11.5, 3.5 Hz), 3.78 (dd, *J* = 11.5, 2.3 Hz, 1H), 3.73–3.60 (m, 2H), 2.25 (dt, *J* = 7.0, 2.5 Hz, 2H), 1.87 (t, *J* = 2.6 Hz, 1H), 1.85–1.67 (m, 2H), 0.94 (s, 9H), 0.92 (s, 9H), 0.11 (s, 6H), 0.11 (s, 3H), 0.10 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 152.8, 149.4, 138.9, 119.9, 86.8, 84.7, 83.3, 82.1, 69.9, 68.8, 68.7, 61.73, 28.5, 25.9, 25.6, 25.5, 18.3, 18.0, 14.9, -4.69, -5.01, -5.50, -5.57. HRMS (ESI+): [M+H]⁺ calcd for C₂₇H₄₈N₅O₄Si₂, 562.3239; found, 562.3298.

((2R,3R,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3-((*tert*-butyldimethylsilyl)oxy)-4-(pent-4-yn-1-yloxy)tetrahydrofuran-2-yl)methanol (S4)

Compound S3 (1.0 g, 1.8 mmol) was dissolved in a 4:1 (v/v) mixture of THF and H₂O at 0 °C.

Trichloroacetic acid (4.2 g, 26 mmol) was added. Stirring was continued at 0 °C for 2 h. The reaction was quenched by the addition of a 1 M aqueous NaOH solution. The resulting mixture was diluted with EtOAc. The mixture was washed with saturated NaHCO₃ and brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The residue was purified by flash chromatography (5:1 EtOAc/hexane) to afford compound **S4** as a white solid (600 mg, 75%). ¹H NMR (500 MHz, CDCl₃): δ 8.33 (s, 1H), 7.93 (s, 1H), 6.03 (s, 2H), 5.89 (d, *J* = 7.5 Hz, 1H), 4.69 (dd, *J* = 7.8, 4.6 Hz 1H), 4.53 (d, *J* = 4.6 Hz, 1H), 4.19 (s, 1H), 3.95 (dd, *J* = 13.1, 1.7 Hz, 1H), 3.72 (d, *J* = 12.6 Hz, 1H), 3.56 (dt, *J* = 8.5, 4.6 Hz, 1H), 3.30–3.24 (m, 1H), 2.17–2.03 (m, 2H), 1.80 (t, *J* = 2.9 Hz, 1H), 1.71–1.51 (m, 2H), 0.95 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 156.4, 152.3, 148.5, 140.8, 121.2, 89.6, 89.5, 83.1, 81.0, 72.0, 69.1, 68.9, 62.9, 28.3, 25.7, 18.2, 14.8, -4.68, -4.72. HRMS (ESI+): [M+H]⁺ calcd for C₂₁H₃₄N₅O₄Si, 448.2375; found, 448.2388.

LiHMDS (7.6 mL of a 1.3 M solution in THF, 9.88 mmol) was added to a solution of compound **S6** (1.5 g, 3.96 mmol) in DMF (5 mL). The solution was stirred at room temperature for 1 h and compound **S5** (500 mg, 2.48 mmol) was added. Stirring was continued at room temperature for 3 h. The reaction mixture was diluted with EtOAc. The mixture was washed with a 0.1 M aqueous HCl solution and brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The residue was purified by flash chromatography (1:4 EtOAc/hexane) to afford compound **S7** as a white solid (440 mg, 47%). ¹H NMR (500 MHz, CDCl₃): δ 7.10 (br, 1H), 6.91 (dd, *J* = 14.9, 5.2 Hz, 2H), 6.56 (d, *J* = 14.9 Hz, 1H), 4.58 (d, *J* = 8.0 Hz, 1H), 4.28 (br, 1H), 1.98–1.82 (m, 1H), 1.48 (s, 9H), 1.45 (s, 9H), 0.97 (d, *J* = 6.9 Hz, 3H), 0.94 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 155.3, 149.8, 147.4, 127.9, 83.7, 80.0, 56.2, 41.1, 32.1, 28.3, 27.9, 18.8, 17.9, 14.2. HRMS (ESI+): [M+Na]⁺ calcd for C₁₆H₃₀N₂O₆NaS, 401.1717; found, 401.1798.

tert-Butyl

(((2R, 3R, 4R, 5R)-5-(6-amino-9H-purin-9-yl)-3-((tert-butyldimethylsilyl)oxy)-4-(pent-4-yn-1-yloxy)tetrahydrofuran-2-yl)methyl)(((S,E)-3-((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))((tert-butoxycarbonyl)amino)-4-methylpent-1))

-en-1-yl)sulfonyl)carbamate (S8)

Compound **S7** (49.2 mg, 0.13 mmol), PPh₃ (35.2 mg, 0.13 mmol), and DEAD (60.9 μ L of a 2.2 M solution in toluene, 0.13 mmol) were added to a solution of compound **S4** (50 mg, 0.11 mmol) in THF (6 mL). The solution was stirred at room temperature. After 2 h, the reaction mixture was evaporated under reduced pressure. The residue was purified by flash chromatography (1:1 to 1:2 EtOAc/hexane and 99:1 to 97:3 CHCl₃/MeOH) to afford compound **S8** as a colorless solid (70.7 mg, 78%). ¹H NMR (500 MHz, CDCl₃): δ 8.35 (s, 1H), 8.08 (s, 1H), 6.79 (dd, *J* = 15.0, 5.0 Hz, 1H), 6.62 (d, *J* = 15.5 Hz, 1H), 6.02 (d, *J* = 5.5 Hz, 1H), 5.72 (br, 2H), 4.75 (t, *J* = 4.5 Hz, 1H), 4.56 (br, 1H), 4.43 (br, 1H), 4.36–4.27 (m, 1H), 4.16 (dd, *J* = 15.0, 7.0 Hz, 1H), 3.85 (dd, *J* = 15.0, 7.0 Hz, 1H), 3.68–3.59 (m, 1H), 3.59–3.48 (m, 1H), 2.21–2.12 (m, 1H), 1.97–1.79 (m, 1H), 1.85 (t, *J* = 2.5 Hz, 1H), 1.79–1.62 (m, 2H), 1.48 (s, 9H), 1.41 (s, 9H), 0.94 (s, 9H), 0.92 (d, *J* = 7.0 Hz, 3H), 0.89 (d, *J* = 7.0 Hz, 3H), 0.13 (s, 6H). ¹³C NMR (500 MHz, CDCl₃): δ 155.7, 155.2, 153.0, 151.1, 149.8, 147.1, 140.3, 128.4, 120.6, 87.5, 85.0, 83.5, 83.2, 80.2, 72.0, 69.1, 68.8, 56.2, 48.1, 32.3, 28.5, 28.4, 28.0, 25.8, 18.9, 18.2, 18.0, 15.0, -4.6, -4.7. HRMS (ESI+): [M+H]⁺ calcd for C₃₇H₆₂N₇O₉SSi, 808.4094; found, 808.4034.

(*S*,*E*)-3-Amino-*N*-(((2*R*,3*R*,4*R*,5*R*)-5-(6-amino-9*H*-purin-9-yl)-3-hydroxy-4-(pent-4-yn-1-yl oxy)tetrahydrofuran-2-yl)methyl)-4-methylpent-1-ene-1-sulfonamide (1)

Compound **S8** (58.6 mg, 0.73 mmol) was dissolved in a 1:1 (v/v) mixture of CH_2Cl_2 and TFA at 0 °C. Stirring was continued at 0 °C for 12 h. The flask was placed on the rotary evaporator, and the CH_2Cl_2 and TFA were removed at reduced pressure. The residue was dissolved in THF (2 mL). The solution was stirred at room temperature and TBAF (380 µL of a 1 M TBAF solution in THF) was added. After 10 h, the reaction mixture was evaporated to dryness. The residue was purified by HPLC [Senshu pak: PEGASIL ODS SP 100 reverse-phase column, ϕ 20 mm × 250

mm, acetonitrile/aqueous TFA (0.1%, 20:80), 8.0 mL/min, 210 nm, $t_{\rm R}$: 14.5 min] to afford compound **1** as a colorless oil (37.4 mg, quant.). ¹H NMR (500 MHz, CD₃OD): δ 8.44 (s, 1H), 8.35 (s, 1H), 6.78 (d, J = 15.5 Hz, 1H), 6.61 (dd, J = 15.5, 8.0 Hz, 1H), 6.11 (d, J = 5.2 Hz, 1H), 4.54 (t, J = 5.4 Hz, 1H), 4.67 (dt, J = 4.7, 1.5 Hz, 1H), 4.21 (dd, J = 8.0, 4.0 Hz, 1H), 3.84–3.78 (m, 1H), 3.78–3.72 (m, 1H), 3.65–3.57 (m, 1H), 3.39 (dd, J = 6.0, 3.8 Hz, 1H), 3.37 (t, J = 3.4 Hz, 1H), 2.23–2.14 (m, 2H), 2.12 (t, J = 2.9 Hz, 1H), 2.08–2.02 (m, 1H), 1.81–1.72 (m, 1H), 1.72–1.62 (m, 1H), 1.05 (dd, J = 6.9, 2.9 Hz, 3H), 1.00 (t, J = 6.6 Hz, 3H). ¹³C (125 MHz, CD₃OD): δ 153.2, 149.7, 147.0, 143.8, 173.1, 135.3, 121.0, 89.4, 85.6, 84.1, 82.9, 71.3, 70.5, 69.8, 57.9, 45.3, 32.2, 29.6, 18.8, 17.9, 15.5. HRMS (ESI+): [M+H]⁺ calcd for C₂₁H₃₂N₇O₅S, 494.2180; found, 494.2242.

tert-Butyl

(1-((4*R*)-2-(4-methoxybenzyl)-5,5-dimethyl-1,3-dioxan-4-yl)-1,5-dioxo-10,13,16-trioxa-2,6-diazanonadecan-19-yl)carbamate (S11)

Compound **S10** (40.0 µL, 0.013 mmol), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (29.0 mg, 0.015 mmol), 1-hydroxybenzotriazole (23.0 mg, 0.015 mmol), and *N*,*N*-diisopropylethylamine (26.0 µL, 0.015 mmol) were added to a solution of compound **S9** (50.0 mg, 0.015 mmol) in DMF (20 mL). The solution was stirred at room temperature for 1 h. The reaction mixture was diluted with EtOAc. The mixture was washed with 5% citric acid, 5% NaHCO₃, and brine. The organic layer was dried over Na₂SO₄ and evaporated to dryness. The residue was purified by flash chromatography (20:1 CHCl₃/MeOH) to afford compound **S11** as a colorless oil (76 mg, 95%). ¹H NMR (500 MHz, CDCl₃): δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.01 (t, *J* = 6.0 Hz, 1H), 6.90 (d, *J* = 9.0 Hz, 2H), 6.54 (br, 1H), 5.44 (s, 1H), 5.04 (br, 1H), 4.05 (s, 1H), 3.80 (s, 3H), 3.71–3.45 (m, 16H), 3.32 (dd, *J* = 12.0, 6.0 Hz, 2H), 3.18 (br, 2H), 2.38 (t, *J* = 5.0 Hz, 2H), 31.78–1.66 (m, 4H), 1.41 (s, 9H), 1.09 (s, 3H), 1.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 771.0, 169.4, 160.3, 156.2, 130.3, 127.6, 113.8, 101.4, 84.0, 78.6, 70.6, 70.3, 70.2, 69.5, 55.4, 38.1, 35.9, 35.1, 33.2, 29.8, 28.9, 28.5, 22.0, 19.3. HRMS (ESI+): [M+Na]⁺ calced for C₃₂H₅₃N₃NaO₁₀, 662.3623; found 662.3622.

Rh-pantetheine analog (S12)

Compound **S11** (30 mg, 0.044 mmol) was dissolved in a 1:1 (v/v) mixture of CH₂Cl₂ and TFA at room temperature. After 30 min, the flask was placed on the rotary evaporator and the CH₂Cl₂ and TFA were removed at reduced pressure to afford TFA salt. A solution of the crude salt, 5(6)-TAMRA-OSu (25.0 mg, 0.047 mmol) and *N*,*N*-diisopropylethylamine (16.0 μ L, 0.092 mmol) in DMF (500 μ L) was stirred at room temperature for 24 h. The reaction mixture was evaporated under reduced pressure. The residue was purified by HPLC [Senshu pak: PEGASIL ODS SP 100 reverse-phase column, ϕ 20 mm × 250 mm, acetonitrile/H₂O (35:65), 8.0 mL/min, 210 nm, *t*_R: 18.5 min] to afford compound **S12** as a pink solid (7.0 mg, 18% over two steps). ¹H NMR (500 MHz, D₂O): δ 8.48 (s, 1H), 8.08 (d, *J* = 7.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 10.0 Hz, 2H), 6.77 (d, *J* = 9.5 Hz, 2H), 6.25 (br, 2H), 3.90 (s, 1H), 3.76–3.10 (m, 20H), 2.38 (t, *J* = 6.0 Hz, 1H), 2.04 (s, 12H), 1.97 (t, *J* = 6.5 Hz, 2H), 1.70 (t, *J* = 6.0 Hz, 2H), 0.83 (s, 3H), 0.79 (s, 3H). HRMS (ESI+): [M+Na]⁺ calced for C₄₄H₅₉N₅NaO₁₁, 856.4103; found 856.4119.

Chemical Biology Procedures

Protein expression and materials: Recombinant proteins *apo*-AusA1,⁹ *apo*-AusA2,¹⁰ and *holo*-TycB1^{11,12,13} were expressed and purified as previously described. The *holo*-TycB1 expression construct was kindly provided by Prof. Mohamed A. Marahiel at Philipps-Universität Marburg, Germany. Recombinant *E. coli* CoA biosynthetic enzymes (pantothenate kinase (CoaA, PanK), phosphopantetheine-adenyltransferase (CoaD, PPAT), dephospho-CoA kinase (CoaE, DPCK)) were expressed and purified as MBP-fusions as described previously.¹⁴ Recombinantly expressed Sfp (PPTase; *Bacillus subtilis*) was overexpressed in *E. coli* as the native protein (untagged) and purified as described previously.¹⁴ The CoaA, CoaD, CoaE, and Sfp expression constructs were kindly provided by Prof. Michael D. Burkart at University of California, San Diego, USA.

Phosphopantetheinylation of *apo*-AusA1 and *apo*-AusA2: The *in vitro* phosphopantetheninylation of *apo*-AusA1 was conducted in a 1-mL reaction vessel containing 0.1 μ g/ μ L *apo*-AusA1 or 0.6 μ g/ μ L *apo*-AusA2, 0.008 μ g/ μ L Sfp (native), 15 mM MgCl₂, 1 mM TCEP, 0.5 mM CoA, and 50 mM potassium phosphate (pH 7.0) at 37 °C for 12 h. The reaction mixtures were dialyzed against 20 mM Tris (pH 8.0), 1 mM MgCl₂, and 1 mM TCEP

using Amicon Ultra Centrifugal Filter Units, MWCO 50 kDa (Millipore). The *holo*-AusA1 and *holo*-AusA2 proteins were quantified by the method of Bradford.¹⁵ After the addition of 10% glycerol (v/v) the proteins were stored at -80 °C.

Fluorescent labeling of *holo*-AusA1 and *holo*-AusA2 with CoaA, CoaD, CoaE, and Sfp and Rh-Ppant analog S12: To verify the high conversion of phosphopantetheinylation of *apo*-AusA1 and *apo*-AusA2, the one-pot reactions of *holo*-AusA1 and *holo*-AusA2 were carried out with the Rh-Ppant analog S12. One-pot reaction mixtures contained the following (final volume of 50 μ L): 50 mM potassium phosphate buffer (pH 7.0), 8 mM ATP, 15 mM MgCl₂, 0.002 μ g/ μ L MBP-CoaA, 0.01 μ g/ μ L MBP-CoaD, 0.01 μ g/ μ L MBP-CoaE, 0.01 μ g/ μ L Sfp (native), and 350 nM of *holo*-AusA1 or *holo*-AusA2. In all experiments, the total DMSO concentration was kept at 1.0%. The reactions were initiated by the addition of 500 μ M Rh-Ppant analog S12 and incubated at 37 °C for 1 h. Reactions were treated with 5× SDS-loading buffer (strong reducing) and subjected to SDS-PAGE. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Labeling of recombinant *apo*-AusA1 and *holo*-AusA1 by probe 1: Standard conditions for probe 1-recombinant protein reactions were as follows: recombinant *apo*-AusA1 (350 nM) and *holo*-AusA1 (350 nM) were treated with probe 1 (100 μ M from a 10 mM stock in DMSO) in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. The inhibition study was carried out by pre-incubation of *holo*-AusA1 (350 nM) with *L*-Val-AMS 2 (1 mM from a 100 mM stock in DMSO) for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. After 12 h at room temperature, these samples were subjected to the click reaction. Rh-azide, TCEP, TBTA ligand, and CuSO₄ were added to provide final concentrations of 100 μ M, 1 mM, 100 μ M, and 1 mM, respectively. After 1 h at room temperature, 5× SDS-loading buffer (strong reducing) was added and the samples were heated at 95 °C for 5 min. Samples were separated by 1D SDS-PAGE and fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Determination of an optimal pH for the labeling of *holo*-AusA1 by probe 1: Recombinant *holo*-AusA1 (350 nM) was incubated with probe 1 (100 μ M from a 10 mM stock in DMSO) in 20 mM Tris–HCl, pH 6.5, 7.0, 7.5, 8.0, and 8.5, 1 mM MgCl₂, and 1 mM TCEP. For inhibition studies, *holo*-AusA1 (350 nM) was pre-incubated with *L*-Val-AMS 2 (1 mM from a 100 mM stock in DMSO) for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. After 12 h at room temperature, these samples were reacted with Rh-azide for 1 h at room temperature. Reactions were treated with 5× SDS-loading buffer (strong reducing) and subjected to SDS-PAGE. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Concentration dependence of the in vitro probe labeling of holo-AusA1: Recombinant

holo-AusA1 (350 nM) was treated with probe **1** (10–100 μ M) in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. For inhibition studies, *holo*-AusA1 (350 nM) was pre-incubated with *L*-Val-AMS **2** (1 mM from a 100 mM stock in DMSO) for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. These reaction mixtures were incubated for 12 h at room temperature. These samples were reacted with Rh-azide for 1 h at room temperature and separated by gel electrophoresis. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Time-course studies of the labeling of *holo*-AusA1 with probe 1: Recombinant *holo*-AusA1 (350 nM) was treated with probe 1 (100 μ M from a 10 mM stock in DMSO) in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. In all experiments, the total DMSO concentration was kept at 2.0%. These reaction mixtures were incubated for the indicated time (0–24 h) at room temperature. These samples were reacted with Rh-azide for 1 h at room temperature and separated by gel electrophoresis. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Comparison of the labeling properties of probe 1 with *holo*-AusA1, *holo*-AusA2, and *holo*-TycB1: For *holo*-AusA1 (A: *L*-Val), *holo*-AusA2 (A: *L*-Tyr), and *holo*-TycB1 (A: *L*-Pro) labeling experiments, probe 1 (100 µM from a 10 mM stock in DMSO) were individually added to a 46-µL reaction vessel containing either *holo*-AusA1 (350 nM), *holo*-AusA2 (350 nM), or *holo*-TycB1 (350 nM), and 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. For inhibition studies, *holo*-AusA1 (350 nM), *holo*-AusA2 (350 nM), and *holo*-TycB1 (350 nM) were pre-incubated with *L*-Val-AMS 2, *L*-Tyr-AMS 3, and *L*-Pro-AMS 4 (1 mM from a 100 mM stock in DMSO), respectively, for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. After 12 h at room temperature, these samples were reacted with Rh-azide for 1 h at room temperature. Reactions were treated with 5× SDS-loading buffer (strong reducing) and subjected to SDS-PAGE. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Measurements of the percentage of *holo*-AusA1 labeled by probe 1: Recombinant *holo*-AusA1 (1 μ M) was treated with probe 1 (1, 10, 20, 50, and 100 μ M) for 12 h at room temperature in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. For inhibition studies, recombinant *holo*-AusA1 (1 μ M) was pre-incubated with *L*-Val-AMS 2 (1 mM from a 100 mM stock in DMSO) for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. After 12 h at room temperature, these samples were reacted with Rh-azide for 1 h at room temperature. Reactions were treated with 5× SDS-loading buffer (strong reducing) and subjected to SDS-PAGE. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare). Protein labeling by probe 1 was quantitated by measuring integrated band intensities using ImageJ. A TAMRA-conjugated BSA

(50, 100, 200, 400, 600, 800, 1000, and 1200 nM) (Thermo Fisher Scientific) was used as a standard of fluorescence intensity.

Peptide mapping of the labeled *holo-***AusA1:** Recombinant *holo-*AusA1 (350 nM) was reacted with probe **1** (50 μ M) for 12 h at room temperature in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. The proteins were subjected to SDS-PAGE and visualized using Coomassie Brilliant Blue (CBB) staining. The bands were excised, destained, and subjected to in-gel digestion with an endoproteinase Asp-N sequence grade (Roche). The digest mixture was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using a UltrafleXtreme mass spectrometer (Bruker Daltonics) in a positive mode. α -Cyano-4-hydroxycinnamic acid (CHCA, Bruker Daltomics) was used as a matrix. Selected MS ion peaks were applied to the tandem mass spectrometry using LIFT mode.

Preparation of lysates for proteomic labeling experiments: Bacillus subtilis (Ehrenberg) Cohn (ATCC 21332) was obtained from the American Type Culture Collection (ATCC). The seed culture from frozen stock was revived for 24 h and grown in a minimal salt (MS) medium with 4 μ M of Fe²⁺ at 30 °C at 200 rpm.¹⁶ The medium contained 4% glucose, 30 mM KH₂PO₄, 40 mM Na₂HPO₄, 50 mM NH₄NO₃, 800 µM MgSO₄, 4 µM FeSO₄, 7 µM CaCl₂, and 4 µM sodium EDTA.¹⁶ The seed cultures (1 mL) was transferred to 200 mL of medium which contained 4% glucose, 30 mM KH₂PO₄, 40 mM Na₂HPO₄, 50 mM NH₄NO₃, 800 µM MgSO₄, 2 mM FeSO₄, 7 µM CaCl₂, and 4 µM sodium EDTA and the resulting mixture was incubated for 24 h at 30 °C at 200 rpm.¹⁶ The cells were harvested by centrifugation and stored in the freezer until used. The frozen cell pellet was resuspended in 20 mM Tris (pH 8.0), 1 mM MgCl₂, 1 mM TCEP, and protease inhibitor cocktail. Because of the lability of the synthetase during mechanical cell disruption processes,¹⁷ a gentle treatment of cells with lysozyme (0.2 mg/mL) was used to release intracellular protein. The cell suspension was incubated at 0 °C for 30 min. The mixture was then incubated at 30 °C for 30 min. The solution was centrifuged for 5 min at 15,000 rpm and the pellet was discarded. The total protein concentration was quantitated by the method of Bradford.¹⁵

SrfAB labeling of *B. subtilis* **ATCC 21332 proteomes:** *B. subtilis* ATCC 21332 proteome (2.0 mg/mL) was treated with probe **1** (100 μ M from a 10 mM stock in DMSO) in 20 mM Tris (pH 8.0), 1 mM TCEP, and 1 mM MgCl₂. Inhibition studies were performed by pre-incubation of proteome (2.0 mg/mL) with *L*-Val-AMS **2** (1 mM from a 100 mM stock in DMSO) for 10 min at room temperature. In all experiments, the total DMSO concentration was kept at 2.0%. These reaction mixtures were incubated for the indicated time (0–12 h) at room temperature. These samples were reacted with Rh-azide for 1 h at room temperature and separated by gel electrophoresis. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Selective labeling of the CP₄ domain of SrfAB in native proteomic environments: *B. subtilis* ATCC 21332 proteome (2.0 mg/mL) was individually treated with *L*-Val-AMS **2**, *L*-Asp-AMS **5**, and *L*-Leu-AMS **6** (10 μ M from 1 mM and 500 μ M stock in DMSO, respectively). These samples were incubated for 10 min at room temperature and subsequently reacted with probe **1** (100 μ M from a 10 mM stock in DMSO). In all experiments, the total DMSO concentration was kept at 2.0%. After 2 h at room temperature, these mixtures were treated with Rh-azide for 1 h at room temperature and separated by gel electrophoresis. Fluorescent gel visualization was performed using a Typhoon 9410 Gel and Blot Imager (GE Healthcare).

Mass spectroscopic analysis, 1D SDS-PAGE, and in-gel digestion: The proteins [SrfAA, SrfAB, and ### (hydrolyzed SrfAB)] were separated by 1D SDS-PAGE by using 6% wide range gels (Nacalai Tesque) and visualized using Sil-best stain one (Nacalai Tesque) or Coomassie Brilliant Blue (CBB) staining. The bands were excised, destained, and subjected to in-gel digestion with TPCK-treated bovine trypsin (Worthington Biochemical Corporation). The digest mixtures were separated using a nanoflow LC (Easy nLC, Thermo Fisher Scientific) on a NTCC analytical column (C-18 reverse-phase column, $\phi 0.075 \times 100$ mm, 3 µm bead size, Nikkyo Technos Co., Ltd.). Buffer compositions were as follows: buffer A was composed of 100% H₂O and 0.1% formic acid, buffer B was composed of 100% acetonitrile and 0.1% formic acid. Peptides were eluted from the C-18 column using a linear gradient of 0-35% buffer B over 10 min at a flow rate of 300 nL/min and subjected to a Q-Exactive mass spectrometer (Thermo Fisher Scientific) in positive mode with a nanospray ion source using the data-dependent TOP10 MS/MS method. Peptide identifications were made using MS/MS ions search toward the NCBI-nr database using the MASCOT program v2.5 (Matrix Science Inc.). The taxonomy was selected as B. subtilis. In addition, the variable modifications were selected as acetyl (protein N-terminal), deamidated (NQ), Gln->pyro-Glu (N-terminal Q), oxidation (M), and propionamide (C).

References

- Rivero, M. R.; Alonso, I.; Carretero, J. C. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson-Khand reactions: applications to the enantioselective synthesis of natural cyclopentanoids. *Chem. Eur. J.* 2004, 10, 5443–5459.
- Skiles, J. W.; Miao, C.; Sorcek, R.; Jacober, S.; Mui, P. W.; Chow, G.; Weldon, S. M.; Passanza, G.; Skoog, M.; Keirns, J.; Letts, G.; Rosenthal, A. S. Inhibition of human leukocytoelastase by *N*-substituted peptides containing α,α-difluorostatone residues at P₁. *J. Med. Chem.* 1992, 35, 4795–4808.
- 3. Reuter, D. C.; McIntosh, J. E.; Guinn, A. C.; Madera, A. M. Synthesis of vinyl sulfonamides

using the Horner reaction. Synthesis 2003, 15, 2321–2324.

- Clarke, K. M.; Mercer, A. C.; La Clair, J. J.; Burkart, M. D. In vivo reporter labeling of protein via metabolic delivery of coenzyme A analogs. *J. Am. Chem. Soc.* 2005, 127, 11234–11235.
- 5. Braun, M.; Hartnagel, U.; Ravanelli, E.; Achae, B.; Böttcher, C.; Vostrowsky, O.; Hirsch, A. Amphiphilic [5:1]- and [3:3]-hexakisadducts of C₆₀. *Eur. J. Org. Chem.* **2004**, 1983–2001.
- Foley, T. L.; Rai, G.; Yasgar, A.; Daniel, T.; Baker, H. L.; Attene-Ramos, M.; Kosa, N. M.; Leister, W.; Burkart, M. D.; Jadhav, A.; Simeonov, A.; Maloney, D. J. 4-(3-Chloro-5-(trifluoromethyl)pyridine-2-yl)-*N*-(4-methoxypyridin-2-yl)piperazine-1-carbot hioamide (ML267), a potent inhibitor of bacterial phosphopantetheinyl transferase that attenuates secondary metabolism and thwarts bacterial growth. *J. Med. Chem.* 2014, 57, 1063–1078.
- Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem. 1997, 62, 7512–7515.
- 8. Still, W. C.; Kahn, A.; Mitra, A. Rapid chromatographic technique for preparative separations with moderate resolution. *J. Org. Chem.* **1978**, 43, 2923–2925.
- Konno, S.; Ishikawa, F.; Suzuki, T.; Dohmae, N.; Burkart, M. D.; Kakeya, H. Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. *Chem. Commun.* 2015, 51, 2262–2265.
- Ishikawa, F.; Miyamoto, K.; Konno, S.; Kasai, S.; Kakeya, H. Accurate detection of adenylation domain functions in nonribosomal peptide synthetases by an enzyme-linked immunosorbent assay system using active site-directed probes for adenylation domains. ACS Chem. Biol. 2015, 10, 2816–2826.
- Stachelhaus, T.; Hüser, A.; Marahiel, M. A. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. *Chem. Biol.* 1996, 3, 913–921.
- Mootz, H. D.; Marahiel, M. A. The tyrocidine biosynthesis operon of *Bacillus brevis*: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. *J. Bacteriol.* **1997**, 179, 6843–6850.
- 13. Stachelhaust, T.; Mootz, H.; Bergendahl, V.; Marahiel, M. A. Peptide bond formation in nonribosomal peptide biosynthesis. *J. Biol. Chem.* **1998**, 273, 22773–22781.
- Haushalter, R. W.; Worthington, A. S.; Hur, G. H.; Burkart, M. D. An orthogonal purification strategy for isolating crosslinked domains of modular synthases. *Bioorg. Med. Chem. Lett.* 2008, 18, 3039–3042.
- 15. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, 72, 248–254.

- 16. Wei, Y.-H.; Chu, I.-M. Enhancement of surfactin production in iron-enriched media by *Bacillus subtilis* ATCC 21332. *Enzyme Microb. Technol.* **1998**, 22, 724–728.
- 17. Augenstein, D. C.; Thrasher, K. D.; Sinskey, A. J., Wang, D. I. C. Optimization in the recovery of a labile intracellular enzyme. *Biotechnol. Bioeng.* **1974**, 16, 1433–1447.

¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) spectra of S2 in CD₃OD

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of S3 in CDCl3

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of S4 in CDCl3

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of S7 in CDCl3

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of S8 in CDCl_3

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of 1 in CD₃OD

 $^1\text{H-NMR}$ (500 MHz) and $^{13}\text{C-NMR}$ (125 MHz) spectra of **S11** in CDCl₃

