Supporting Information

Solid-state NMR at Natural Isotopic Abundance for the Determination of Conformational Polymorphism– The Case of designed β -turn peptides containing di-prolines

Jayasubba Reddy Yarava,^{a,c,d,}, Rajesh Sonti,^{b,c,e}, K. Kantharaju^{b,f} S. Raghothama^{c,*} and K.V. Ramanathan^{c,*}

^aDepartment of Physics, ^bMolcular Biophysics Unit, ^cNMR Research Center Indian Institute of Science, Bangalore-560012, India.

Materials and Methods

The peptides Piv-^LPro- $\psi^{H,CH3}$ Pro-Leu-NHMe (Peptide – 1) and Piv-^DPro- $\psi^{CH3,CH3}$ Pro-Leu-NHMe (Peptide – 2) were synthesized using the protocol known already.¹ NMR spectra of the samples were recorded on a Bruker Avance-III 500WB NMR spectrometer operating at a proton resonance frequency of 500.17 MHz. All experiments were performed at room temperature using a Bruker 4 mm triple resonance MAS probe, operating in double resonance mode. Sample spinning speeds employed were typically 11 kHz. Carbon-13 magnetization was generated by cross polarization with a rf amplitude ramp on the ¹H channel with a contact time of 2.0 ms. SPINAL-64² heteronuclear dipolar decoupling was employed throughout with an acquisition time of 40.0 ms. A proton rf filed amplitude of 62.5 kHz was used 64 and 32 transients were co-added with a recycle delay of 5s employed for peptide-1 and 2 respectively. The assignment of all the proton, carbon and nitrogen resonances were carried out with the help of a set of 1D and 2D correlation experiments. The chemical shifts of nuclei relevant for the present study are given in Tables S1 to S3.

^{·····}

^{*} Authors for Correspondence

Current address:

d) Institut des Sciences et Ingènierie Chimiques, EcolePolytechniqueFèdèrale de Lausanne, Switzerland.

e) Biozentrum, Structural Biology, Universität Basel, Basel, Switzerland.

f) Department of Chemistry, Rani Channamma University, Belgavi, India.

2D ¹H (DQ) – ¹³C (SQ) Correlation Experiment

Figure S1: The pulse sequence for the two-dimensional MAS-J-¹H(DQ)-¹³C-HMQC correlation experiment.

The two-dimensional MAS-J-¹H (DQ)-¹³C-HMQC pulse sequence³ used for peptide-2 is shown in **Figure S1**. The phase modulated decoupling scheme DUMBO-1⁴ homonuclear decoupling with rf filed amplitude of 100 kHz was applied in the τ and t_1 periods. The t_1 increment was set to 32 µs corresponding to one basic DUMBO-1 cycle. The τ period was set to 2.0 ms. The POST-C7⁵ recoupling was used for exciting DQ coherences and also for reconversion periods with the MAS of 11 kHz. 77 kHz rf power was used for the POST-C7 sequence. Two basic POST-C7 blocks were used with duration of 52 µs long for the DQ excitation and reconversion. 448 scans were used for each of 188 TD points with recycle delay of 4.2 s between scans. Resulting total experimental time was 98.2 h. Spectra were acquired in the State-TPPI method.⁶

Figure S2: Pulse sequence for the two-dimensional ${}^{1}H(DQ)$ - ${}^{13}C$ -HETCOR experiment.

For peptide-1, the 2D ¹H DQ-¹³C HETCOR experiment⁷ was employed which gave better S/N. The DUMBO-1 homonuclear dipolar decoupling was used for the t_1 period. The CP contact time was set to 100 μ s. For each of 256 t_1 increments 64 transients were co-added with a recycle delay of 4s, resulting total experimental time of 18.2h. All the other parameters were same as for peptide-2.

Assignments:

Peptide-1, Piv-^LPro- $\psi^{H,CH3}$ Pro-Leu-NHMe

 Table-S1: ¹H and ¹³C chemical shifts of nuclei across the peptide bond in the diproline segment of

 Peptide -1

Peptide-I	Atom label	Chemical shift
Residues		(ppm)
Pro ₍₁₎ α	C1A	59.7
$\psi Pro_{(2)} \alpha$	C2A	62.2
ψPro ₍₂₎ δ(CH)	C2D	60.4
ψPro ₍₂₎ ε met.	C2E	27.8
$Pro_{(1)} \alpha$	H1A	4.6
ψPro ₍₂₎ α	H2A	5.5
ψPro ₍₂₎ δ (CH)	H2D	5.3
$\psi Pro_{(2)} \epsilon$ met.	H2E1, E2, E3	0.7

Peptide-2, Piv-^DPro-ψ^{CH3,CH3}Pro-Leu-NHMe

Table-S2: ¹H and ¹³C chemical shifts of nuclei across the peptide bond in the diproline segment of Peptide -2

Peptide-II	Atom label	Chemical shift
Residues		Mol. A , Mol. B
		(ppm)
^D Pro ₍₁₎ α	C1A	61.85, 61.85
ψPro ₍₂₎ α	C2A	66.6, 66.6
$\psi Pro_{(2)} \epsilon_{1,} \epsilon_{2} Met$	C2E1, C2E2	28.1, 28.1
^D Pro ₍₁₎ α	H1A	3.6, 3.6
ψPro ₍₂₎ α	H2A	5.4, 6.1
$\psi Pro_{(2)} \epsilon_{1,} \epsilon_{2} Met$	H2E1, H2E2, H2E3,	0.7, 0.7
	H2E4, H2E5, H2E6	

Table-S3: H_N proton chemical shifts of peptide-2

Peptide-II	Atom label	Chemical shift
Residues		Mol. A , Mol. B
		(ppm)
Leu NH	H3	7.9, 8.3
(NH)Me	H1M	6.7, 7.9

References

- 1 Kantharaju, S. Raghothama, U. S. Raghavender, S. Aravinda, N. Shamala and P. Balaram, *Peptide Science*, 2009, **92**, 405.
- 2 B. M. Fung, A. K. Khitrin and K. Ermolaev, J. Magn. Reson., 2000, 142, 97.
- 3 Y. Jayasubba Reddy, V. Agarwal, A. Lesage, L. Emsley and K. V. Ramanathan, *J. Magn. Reson.*, 2014, **245**, 31.
- 4 A. Lesage, D. Sakellariou, S. Hediger, B. Eléna, P. Charmont, S. Steuernagel and L. Emsley, *J. Magn. Reson.*, 2003, **163**, 105.
- 5 M. Hohwy, H. J. Jakobsen, M. Eden, M. H. Levitt and N. C. Nielsen, *J. Chem. Phys.*, 1998, **108**, 2686.
- 6 D. Marion, M. Ikura, R. Tschudin and A. Bax, J. Magn. Reson. (1969), 1989, **85**, 393.
- 7 A. Lesage, L. Emsley, F. Penin and A. Böckmann, J. Am. Chem. Soc., 2006, **128**, 8246.