SUPPORTING INFORMATION

Palladium(II)-catalyzed direct O-alkenylation of 2arylquinazolinones with *N*-tosylhydrazones: an efficient route to

O-alkenylquinazolines

Rajaka Lingayya,^{a, b} Mari Vellakkaran,^a Kommu Nagaiah,^{a, b,*} Prabhakar Rao Tadikamalla^c and Jagadeesh Babu Nanubolu^d

^a Organic and Biomolecular Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-

500 007, India E-mail: nagaiah@iict.res.in, nagasaisrikari@gmail.com

^b Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology,

Hyderabad-500 007, India

^c Center for Nuclear Magnetic Resonance, CSIR–Indian Institute of Chemical Technology, Hyderabad–500 007, India

^d Lab of X-ray Crystallography, CSIR–Indian Institute of Chemical Technology, Hyderabad–500 007, India

Table of Contents:

Serial No.	Description	Page No.
1.1	General Experimental	S2
1.2	Optimization of reaction conditions	S2-S3
1.3	General Experimental Procedure for Synthesis of	S3-S4
	Derivatives (1-30)	
1.4	Analytical Data	S4-S16
1.5	¹ H NMR and ¹³ C NMR Spectra S1 ⁷	
1.6	2D NMR Studies of 4	S49-S52
1.7	X-ray Crystallography for 4	S53

1.1 General Experimental Details:

Reactions were carried out in oven dried round-bottomed flasks. All solvents and reagents were used, as received from the suppliers. TLC was performed on Merck Kiesel gel 60, F₂₅₄ plates with the layer thickness of 0.25 mm. Column chromatography was performed on silica gel (100-200 mesh) using a gradient of ethyl acetate and hexane as mobile phase. Melting points were determined on a Fisher John's melting point apparatus and are uncorrected. IR spectra were recorded on a Bruker Alpha Spectrometer FT-IR system. ¹H NMR spectral data were collected at 300, 400, 500 & 600 MHz, while ¹³C NMR were recorded at 100, 125 and 150 MHz. ¹H NMR spectral data are given as chemical shifts in ppm followed by multiplicity (s- singlet; d- doublet; dd- doublet of doublet; t- triplet; q- quartet; m- multiplet), number of protons and coupling constants. ¹³C NMR chemical shifts are expressed in ppm. The mass spectral analyses were carried out using Electrospray Ionization (ESI) techniques. Mass spectra were obtained on a Shimadzu LCMS-2020 mass spectrometer. HRMS (ESI) spectral data were collected using Q-star & ORBITRAP High Resolution Mass Spectrometer.

1.2 Optimization of reaction conditions.^{*a*}

entry	catalyst/ligand	base	solvent	yield $(\%)^b$
1	Pd(OAc) ₂ /none	K_2CO_3	1,4-dioxane	0
2^c	Pd(OAc) ₂ /none	Cs_2CO_3	1,4-dioxane	0
3	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	1,4-dioxane	67
4	Pd(OAc) ₂ /PPh ₃	K_2CO_3	1,4-dioxane	33
5	$Pd(OAc)_2/PPh_3$	KO ^t Bu	1,4-dioxane	21
6	$Pd(OAc)_2/PPh_3$	LiO'Bu	1,4-dioxane	27
7	$Pd(OAc)_2/PPh_3$	K_3PO_4	1,4-dioxane	52
8	$Pd(OAc)_2/PCy_3^d$	Cs_2CO_3	1,4-dioxane	41
9	$Pd(OAc)_2/Dppp^d$	Cs_2CO_3	1,4-dioxane	31
10	$Pd(OAc)_2/Bpy^d$	Cs_2CO_3	1,4-dioxane	35
11	Pd(OAc) ₂ /Phen ^d	Cs_2CO_3	1,4-dioxane	43

12	$Pd(OAc)_2/Dmphen^d$	Cs_2CO_3	1,4-dioxane	28
13	Pd(OAc) ₂ /PPh ₃	Cs_2CO_3	DCE	30
14	Pd(OAc) ₂ /PPh ₃	Cs_2CO_3	toluene	38
15	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	DMF	51
16	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	DMAc	0
17	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	DMSO	0
18	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	MeOH	0
19	Pd(OAc) ₂ /PPh ₃	Cs_2CO_3	t-AmOH	90
20	Pd(OAc) ₂ (PPh ₃) ₂ /none	Cs_2CO_3	t-AmOH	65
21	PdCl ₂ /PPh ₃	Cs_2CO_3	t-AmOH	41
22	PdCl ₂ (MeCN) ₂ /PPh ₃	Cs_2CO_3	t-AmOH	20
23	PdCl ₂ (PhCN) ₂ /PPh ₃	Cs_2CO_3	t-AmOH	13
24	Pd(TFA) ₂ /PPh ₃	Cs_2CO_3	t-AmOH	0
25^e	Pd(OAc) ₂ /PPh ₃	Cs_2CO_3	t-AmOH	90
26 ^f	Pd(OAc) ₂ /PPh ₃	Cs ₂ CO ₃	<i>t</i> -AmOH	90
27 ^g	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	<i>t</i> -AmOH	44
28^{h}	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	<i>t</i> -AmOH	10
29	$Pd_2(dba)_3/PPh_3$	Cs_2CO_3	<i>t</i> -AmOH	17
30	Pd(PPh ₃) ₄ /none	Cs_2CO_3	t-AmOH	21
31	none/PPh ₃	Cs_2CO_3	<i>t</i> -AmOH	0
32	$Pd(OAc)_2/PPh_3$	none	<i>t</i> -AmOH	0
33 ^{<i>i</i>}	$Pd(OAc)_2/PPh_3$	Cs_2CO_3	t-AmOH	90
34 ^j	Pd(OAc) ₂ (PPh ₃) ₂ /none	Cs ₂ CO ₃	<i>t</i> -AmOH	41

^{*a*}Unless specified, the reaction was carried out with Ia (0.5 mmol), IIa (0.5 mmol), catalyst (5 mol%), ligand (10 mol%), base (2 equiv.) in a solvent (3 mL) at 100 °C for 12 h, in open air. ^{*b*}Isolated yield (average of two runs). ^{*c*}TBAI (20 mol%) was used. ^{*d*}PCy₃ = tricyclohexylphosphine, Dppp = 1,3-bis(diphenylphosphino)propane, Bpy = 2,2'-bipyridyl, Phen = 1,10-phenanthroline, Dmphen = 2,9-dimethyl-1,10-phenanthroline. ^{*e*}At 80 °C. ^{*f*}Pd(OAc)₂ (2.5 mol%), PPh₃ (5 mol%), Cs₂CO₃ (1 equiv.) at 80 °C. ^{*g*}Pd(OAc)₂ (1 mol%), PPh₃ (2 mol%), Cs₂CO₃ (1 equiv.) at 80 °C. ^{*h*}Under N₂. ^{*i*}Under O₂ (balloon). ^{*f*}CuCl₂ (2 equiv.) was used.

1.3 General Experimental Procedure for Synthesis of Derivatives (1-30).

A mixture of quinazolinone (**Ia**, 0.5 mmol, 1.0 equiv.), *N*-tosylhydrazone (**IIa**, 0.5 mmol, 1.0 equiv.), Cs_2CO_3 (0.5 mmol, 1.0 equiv.), $Pd(OAc)_2$ (2.8 mg, 2.5 mol%), PPh₃ (6.5 mg, 5 mol%), and *tert*-amyl alcohol (3.0 mL) were added to a round-bottomed flask. The reaction mixture was stirred in open air at 80 °C and the progress of the reaction was monitored by

TLC. After completion of the reaction, the mixture was cooled to room temperature. The reaction mixture was partitioned between ethyl acetate (25.0 mL) and water (25.0 mL) in a separatory funnel. The organic layer was washed with water, and brine, dried over anhydrous Na₂SO₄ (s) and concentrated under vacuum. The residue was purified by column chromatography using a gradient of hexane and ethyl acetate as the eluent system to afford the pure products.

1.4 Analytical data

2-Phenyl-4-((1-phenylvinyl)oxy)quinazoline (1).

Yield: 90% (145 mg); pale yellow solid; mp: 163–165 °C; IR (neat): $v_{max} =$ 3063, 3028, 2923, 2853, 1718, 1622, 1575, 1557, 1490, 1349, 1264, 1068, 946, 757, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, J = 8.1 Hz, 1H), 8.31 (d, J = 3.6 Hz, 2H), 8.02 (d, J = 8.4 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.57 (dd, J = 1.018.6, 7.4 Hz, 3H), 7.38 (d, J = 2.3 Hz, 2H), 7.31 – 7.27 (m, 4H), 5.60 (d, J = 1.3 Hz, 1H), 5.28 (d, J = 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 160.0, 155.2, 152.5, 137.6, 135.0, 133.8, 130.4, 128.7, 128.4, 128.2, 128.1, 127.8, 126.7, 125.2, 123.3, 114.8, 101.9; MS (ESI): m/z: 325 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₇ON₂: 325.13354 [M+H]⁺; found: 325.13318.

2-Phenyl-4-((1-(*p*-tolyl)vinyl)oxy)quinazoline (2).

Yield: 91% (153 mg); white solid; mp: 173–175 °C; IR (neat): $v_{max} =$ 3062, 3028, 2923, 2853, 1735, 1621, 1575, 1557, 1488, 1457, 1387, 1348, 1261, 1066, 945, 770, 709 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.39 (dd, J = 8.2, 0.8 Hz, 1H), 8.32 (dd, J = 6.6, 3.3 Hz, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.89 -

7.86 (m, 1H), 7.62 - 7.59 (m, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.41 - 7.39 (m, 3H), 7.12 (d, J =8.0 Hz, 2H), 5.56 (d, J = 2.0 Hz, 1H), 5.23 (d, J = 2.0 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (125) MHz, CDCl₃): δ 166.2, 160.0, 155.3, 152.5, 138.7, 137.7, 133.8, 132.2, 130.4, 129.1, 128.4, 128.2, 128.1, 126.7, 125.2, 123.4, 114.9, 101.1, 21.2; MS (ESI): *m/z*: 339 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₃H₁₉ON₂: 339.14919 [M+H]⁺; found: 339.14858.

4-((1-(4-Methoxyphenyl)vinyl)oxy)-2-phenylquinazoline (3).

Yield: 86% (152 mg); white solid; mp: 198–200 °C; IR (neat): $v_{max} =$ 3064, 2922, 2851, 1713, 1611, 1513, 1451, 1243, 1029, 829, 708 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.06 (d, *J* = 8.0 Hz, 2H), 7.53 (t, *J* =

7.4 Hz, 1H), 7.42 (d, J = 7.8 Hz, 2H), 7.40 – 7.37 (m, 3H), 7.31 (dd, J = 12.2, 3.4 Hz, 2H), 7.24 (d, J = 1.0 Hz, 1H), 6.89 (d, J = 8.6 Hz, 2H), 5.47 (s, 1H), 5.23 (s, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 159.2, 159.0, 158.1, 149.3, 139.8, 136.1, 133.8, 132.7, 130.5, 129.9, 129.5, 128.4, 128.2, 127.5, 126.6, 113.8, 111.5, 55.2; MS (ESI): *m/z*: 355 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₃H₁₉O₂N₂: 355.14410 [M+H]⁺; found: 355.14339.

4-((1-(2-Fluorophenyl)vinyl)oxy)-2-phenylquinazoline (4).

Yield: 82% (140 mg); colorless solid; mp: 129–130 °C; IR (neat): $v_{max} = 3066, 2919, 2850, 1730, 1621, 1575, 1558, 1489, 1455, 1253, 1159, 762, 709 cm⁻¹; ¹H NMR (600 MHz, DMSO-$ *d* $₆): <math>\delta$ 8.40 (d, *J* = 7.9 Hz, 1H), 8.23 (d, *J* = 6.7 Hz, 2H), 8.06 – 8.02 (m, 2H), 7.78 – 7.76 (m, 1H), 7.63 – 7.61 (m, 1H), 7.51 – 7.45 (m, 3H), 7.39 – 7.36 (m, 1H), 7.28 (dd, *J* = 11.5, 8.4 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 5.72 (s, 1H), 5.61 (d, *J* = 1.2 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 165.4, 159.9, 158.5, 158.3, 151.7, 149.2, 136.7, 134.9, 131.0, 130.8 (d, *J* = 8.6 Hz), 128.6, 128.4 (d, *J* = 2.0 Hz), 127.8, 127.8, 124.7, 123.4, 122.6 (d, *J* = 11.5 Hz), 116.3 (d, *J* = 22.1 Hz), 114.1, 107.4 (d, *J* = 6.3 Hz); MS (ESI): *m/z*: 343 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₂H₁₆FN₂O: 343.12412 [M+H]⁺; found: 343.12311.

2-Phenyl-4-((1-(*m*-tolyl)vinyl)oxy)quinazoline (5).

Yield: 85% (143 mg); white solid; mp: 161–163 °C; IR (neat): $v_{max} =$ 2918, 2850, 1726, 1622, 1575, 1557, 1461, 1384, 1349, 1269, 785, 768, 706 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.39 (dd, J = 8.2, 0.8 Hz, 1H), 8.32 (dd, J = 6.7, 3.0 Hz, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.63 – 7.59 (m, 1H), 7.43 - 7.39 (m, 4H), 7.20 (t, J = 7.6 Hz, 1H), 7.10 (d, J = 8.4 Hz, 2H), 5.58 (d, J = 2.0Hz, 1H), 5.25 (d, J = 2.0 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 160.0, 155.5, 152.5, 138.0, 137.7, 135.1, 133.8, 130.4, 129.5, 128.5, 128.3, 128.2, 128.1, 126.7, 126.0, 123.4, 122.5, 114.9, 101.8, 22.6; MS (ESI): *m/z*: 339 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₃H₁₉N₂O: 339.14919 [M+H]⁺; found: 339.14843.

4-((1-(4-Fluorophenyl)vinyl)oxy)-2-phenylquinazoline (6).

Yield: 92% (157 mg); pale yellow solid; mp: 178–180 °C; IR (neat): $v_{\text{max}} = 3065, 2923, 2853, 1718, 1600, 1575, 1507, 1449, 1261, 837, 770,$ 710 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, J = 8.1 Hz, 1H), 8.32

(d, J = 3.8 Hz, 2H), 8.03 (d, J = 8.4 Hz, 1H), 7.88 - 7.85 (m, 1H), 7.61 - 7.56 (m, 2H), 7.41(dd, J = 7.1, 5.2 Hz, 2H), 7.06 - 7.02 (m, 2H), 6.99 - 6.96 (m, 2H), 5.54 (d, J = 1.9 Hz, 1H),5.26 (d, J = 1.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 164.1, 159.9, 154.4, 152.5, 137.6, 133.9, 130.5, 129.3, 128.4, 128.3, 127.2, 127.1, 126.8, 123.3, 115.4 (d, *J* = 21.8 Hz), 114.8, 101.8; MS (ESI): m/z: 343 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆FN₂O: 343.12412 [M+H]⁺; found: 343.12447.

4-((1-(4-Chlorophenyl)vinyl)oxy)-2-phenylquinazoline (7).

Yield: 89% (159 mg); pale yellow solid; mp: 200–202 °C; IR (neat): v_{max} = 2922, 2852, 1690, 1623, 1575, 1556, 1490, 1460, 1259, 1214, 1092, 829, 754, 668 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.1 Hz,

1H), 8.31 (d, J = 4.7 Hz, 2H), 8.03 (d, J = 8.6 Hz, 1H), 7.89 – 7.83 (m, 2H), 7.60 (t, J = 7.5Hz, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.59 (d, J = 1.8 Hz, 1H), 5.30 (d, J = 1.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 159.9, 154.2, 152.5, 137.5, 134.5, 133.9, 133.6, 130.5, 128.7, 128.3, 128.3, 127.8, 126.8, 126.5, 123.2, 114.7, 102.5; MS (ESI): m/z: 359 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆ClN₂O: 359.09457 [M+H]⁺; found: 359.09500.

4-((1-(4-Bromophenyl)vinyl)oxy)-2-phenylquinazoline (8).

Yield: 87% (175 mg); yellow solid; mp: 138–140 °C; IR (neat): $v_{max} =$ 3019, 2923, 2853, 1688, 1623, 1575, 1557, 1487, 1262, 1214, 830, 748, 667 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.36 (d, *J* = 8.1 Hz, 1H), 8.32

- 8.30 (m, 2H), 8.04 (d, J = 8.4 Hz, 1H), 7.90 - 7.87 (m, 1H), 7.63 - 7.55 (m, 2H), 7.46 (d, J = 4.8 Hz, 3H), 7.41 (dd, J = 5.4, 1.7 Hz, 3H), 5.61 (d, J = 2.2 Hz, 1H), 5.30 (d, J = 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 159.9, 154.3, 152.5, 137.5, 134.1, 134.0, 131.6, 130.5, 129.0, 128.4, 128.3, 128.2, 126.8, 123.2, 122.8, 114.7, 102.6; MS (ESI): m/z: 405 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆BrN₂O: 403.04405 [M+H]⁺; found: 403.04403. **4-((1-([1,1'-Biphenyl]-4-yl)vinyl)oxy)-2-phenylquinazoline (9).**

Yield: 73% (146 mg); white solid; mp: 139–141 °C; IR (neat): $v_{max} =$ 3056, 3028, 2923, 2853, 1680, 1603, 1551, 1517, 1486, 1447, 1267, 1218, 839, 765, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.40 (d, J =

8.1 Hz, 1H), 8.34 (dd, J = 5.8, 3.7 Hz, 2H), 8.11 – 8.08 (m, 1H), 8.05 – 8.00 (m, 1H), 7.87 (t, J = 7.6 Hz, 1H), 7.67 (dd, J = 8.3, 2.6 Hz, 2H), 7.61 – 7.53 (m, 5H), 7.44 – 7.37 (m, 3H), 7.34 – 7.29 (m, 2H), 5.66 (d, J = 2.3 Hz, 1H), 5.30 (d, J = 2.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 160.0, 154.9, 152.5, 141.4, 140.6, 137.6, 133.8, 130.4, 129.6, 128.7, 128.4, 128.1, 127.2, 127.1, 127.0, 126.9, 126.5, 125.6, 123.3, 114.8, 101.9; MS (ESI): m/z: 401 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₈H₂₁N₂O: 401.16484 [M+H]⁺; found: 401.16440.

4-((1-(Naphthalen-2-yl)vinyl)oxy)-2-phenylquinazoline (10).

Yield: 69% (129 mg); yellow solid; mp: 135–137 °C; IR (neat): $v_{max} =$ 3056, 2924, 2853, 1716, 1678, 1623, 1599, 1573, 1488, 1449, 1270, 817, 772, 709 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.45 (d, J = 7.9 Hz, 1H), 8.30 (dd, J = 3.3, 1.8 Hz, 2H), 8.11 (d, J = 6.7 Hz, 1H), 8.05 – 8.01 (m, 2H), 7.89 – 7.75 (m, 4H), 7.63 - 7.58 (m, 1H), 7.46 - 7.40 (m, 2H), 7.34 (d, J = 5.5 Hz, 2H), 7.21 (s, 1H), 5.75(s, 1H), 5.37 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.2, 160.0, 155.2, 152.5, 137.6, 133.9, 130.4, 129.6, 128.4, 128.3, 128.2, 127.7, 127.5, 126.8, 126.3, 126.1, 126.0, 124.9, 124.3, 124.0, 123.4, 123.1, 114.9, 102.4; MS (ESI): *m/z*: 375 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₆H₁₉ON₂: 375.14919 [M+H]⁺; found: 375.14935.

4-((1-(2,4-Dichlorophenyl)vinyl)oxy)-2-phenylquinazoline (11).

Yield: 82% (161 mg); yellow solid; mp: 155–156 °C; IR (neat): $v_{max} =$ 3066, 2923, 2852, 1723, 1621, 1575, 1559, 1489, 1271, 822, 771, 708, 680 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.50 (dd, J = 5.6, 1.7 Hz, 1H), 8.37 (dd, J = 3.4, 1.8 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.85 – 7.80 (m, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.58 – 7.52 (m, 2H), 7.48 – 7.42 (m, 2H), 7.36 (dd, J = 6.7, 2.1 Hz, 1H), 7.25 – 7.17 (m, 2H), 5.57 (d, J = 1.5 Hz, 1H), 5.46 (d, J = 1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 159.7, 152.4, 151.8, 134.8, 133.9, 133.1, 130.5, 129.6, 128.4, 128.2, 128.0, 127.6, 127.4, 127.2, 126.9, 126.4, 123.5, 115.1, 107.4; MS (ESI): *m/z*: 393 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₂H₁₅Cl₂N₂O: 393.0556 [M+H]⁺; found: 393.0547.

4-((1-(3,5-Difluorophenyl)vinyl)oxy)-2-phenylquinazoline (12).

Yield: 89% (160 mg); light yellow solid; mp: 140–142 °C; IR (neat): $v_{max} =$ 3067, 2923, 2852, 1740, 1621, 1589, 1557, 1488, 1384, 1347, 1317, 1263, 1211, 1118, 987, 860, 771, 706 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, J = 8.4 Hz, 1H), 8.32 (dd, J = 6.5, 2.8 Hz, 2H), 8.18 (d, J = 7.5 Hz, 1H),

8.05 (d, J = 8.4 Hz, 1H), 7.90 (t, J = 7.6 Hz, 1H), 7.63 (dd, J = 14.4, 7.0 Hz, 1H), 7.52 (t, J = 14.4, 7.0 Hz, 1H), 7.52 (t

7.7 Hz, 1H), 7.43 (d, J = 2.2 Hz, 1H), 7.12 (d, J = 6.4 Hz, 2H), 6.79 – 6.72 (m, 1H), 5.65 (d, J= 2.1 Hz, 1H), 5.38 (d, J = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 164.3 (d, J = 12.8 Hz), 161.8 (d, J = 13.0 Hz), 159.8, 152.6, 137.4, 134.1, 130.6, 130.1, 128.7, 128.3, 128.2, 127.0, 123.2, 114.6, 108.4 (d, J = 7.5 Hz), 108.1, 104.1; MS (ESI): m/z: 361 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₅F₂N₂O: 361.1147 [M+H]⁺; found: 361.1141.

2-Phenyl-4-((1-(4-(trifluoromethyl)phenyl)vinyl)oxy)quinazoline (13).

Yield: 78% (153 mg); white solid; mp: 173–175 °C; IR (neat): $v_{max} =$ 3066, 2923, 2852, 1739, 1621, 1576, 1489, 1265, 770, 708 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.37 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 7.9

Hz, 2H), 8.04 (d, J = 8.3 Hz, 2H), 7.90 – 7.87 (m, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.63 – 7.60 (m, 1H), 7.58 (d, J = 8.4 Hz, 2H) 7.39 (d, J = 6.6 Hz, 2H), 5.70 (d, J = 2.2 Hz, 1H), 5.40 (d, J= 2.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 165.9, 159.8, 154.0, 152.5, 138.6, 137.4, 134.1, 130.6, 130.1, 128.7, 128.5, 128.3, 128.3, 128.2, 126.9, 125.5, 123.2, 114.7, 104.1; MS (ESI): m/z: 393 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₃H₁₆ON₂F₃: 393.12092 [M+H]⁺; found: 393.12127.

4-((1-(4-Nitrophenyl)vinyl)oxy)-2-phenylquinazoline (14).

Yield: 68% (125 mg); yellow solid; mp: 152–153 °C; IR (neat): $v_{max} =$ 2922, 2852, 1726, 1594, 1518, 1343, 1219, 970, 854, 772, 686 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.22 – 8.17 (m, 2H), 8.14 (d, J = 8.9 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.50 (t, J = 9.2 Hz, 2H), 7.45 (d, J = 8.1 Hz, 1H), 7.34 (d, J = 1.18.7 Hz, 1H, 7.23 - 7.18 (m, 4H), 7.09 (dd, J = 12.2, 4.1 Hz, 1H), 5.60 (s, 1H), 5.53 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.8, 155.3, 151.9, 148.2, 144.0, 138.2, 137.2, 133.2, 131.0, 129.5, 129.1, 128.9, 128.6, 127.9, 126.9, 123.4, 116.5, 102.7; MS (ESI): m/z: 370 [M+H]+; HRMS (ESI): m/z: calcd for C₂₂H₁₆N₃O₃: 370.11862 [M+H]⁺; found: 370.11768.

2-Phenyl-4-((4-phenylbut-1-en-2-yl)oxy)quinazoline (15).

Yield: 71% (125 mg); white solid; mp: 182–183 °C; IR (neat): $v_{max} =$ 3063, 3026, 2922, 2853, 1735, 1621, 1574, 1558, 1492, 1216, 754, 700 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 8.54 (dd, J = 6.9, 2.9 Hz, 2H), 8.20 – 8.14 (m, 1H), 8.05 - 7.97 (m, 1H), 7.85 - 7.80 (m, 1H), 7.58 - 7.52 (m, 1H), 7.50 (dd, J = 1.53 (m, 1H), 7.50 (m, 1H),4.9, 1.4 Hz, 3H), 7.27 (dd, J = 2.7, 1.4 Hz, 2H), 7.24 – 7.17 (m, 3H), 5.03 (d, J = 1.5 Hz, 1H), 4.95 (d, J = 0.6 Hz, 1H), 2.88 – 2.79 (m, 2H), 2.77 – 2.69 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 160.0, 157.5, 151.9, 141.6, 138.2, 133.3, 132.7, 130.3, 129.4, 128.3, 128.2, 127.9, 126.1, 125.8, 123.5, 115.5, 101.6, 37.8, 31.9; MS (ESI): m/z: 353 [M+H]+; HRMS (ESI): m/z: calcd for C₂₄H₂₁N₂O: 353.16484 [M+H]⁺; found: 353.16525.

4-(Pent-1-en-2-yloxy)-2-phenylquinazoline (16).

Yield: 68% (98 mg); pale yellow solid; mp: 191–192 °C; IR (neat): $v_{max} =$ 3065, 2959, 2929, 1717, 1620, 1572, 1558, 1491, 1445, 1219, 771, 708, 681 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.57 (dd, J = 7.2, 1.1 Hz, 2H), 8.17 (dd, J = 8.1, 0.6 Hz, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.82 - 7.78 (m, 1H), 7.54 - 7.48 (m, 2H), 7.43 (t, J = 7.7 Hz, 1H), 5.01 (s, 1H), 4.93 (s, 1H), 2.56 (t, J =7.5 Hz, 2H), 1.78 - 1.71 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.5, 160.0, 151.8, 138.3, 133.2, 130.3, 129.4, 128.4, 128.2, 127.8, 126.1, 123.5, 115.6, 100.9, 38.2, 19.8, 14.0; MS (ESI): m/z: 291 [M+H]+; HRMS (ESI): m/z: calcd for C₁₉H₁₉N₂O: 291.14919 [M+H]⁺; found: 291.14825.

4-(Cyclohex-1-en-1-yloxy)-2-phenylquinazoline (17).

Yield: 66% (99 mg); white solid; mp: 199–201 °C; IR (neat): $v_{max} = 3064$, 3028, 2924, 2853, 1715, 1619, 1572, 1557, 1490, 1448, 1416, 1274, 769, 709, 683 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.56 (dd, J = 7.9, 1.8 Hz, 2H), 8.18 (dd, J = 8.2, 0.9 Hz, 1H), 8.05 (dd, J = 8.3, 1.3 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.82 - 7.77 (m, 1H), 7.52 - 7.48 (m, 2H), 7.45 - 7.40 (m, 1H), 5.62 - 5.56 (m, 1H), 2.42 - 7.40

2.38 (m, 2H), 2.36 – 2.32 (m, 2H), 1.93 – 1.85 (m, 2H), 1.82 – 1.73 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): δ 166.2, 160.1, 151.9, 138.3, 133.2, 132.6, 130.3, 129.5, 128.3, 128.2, 127.8, 126.1, 123.6, 115.7, 31.4, 29.6, 25.6, 23.7; MS (ESI): *m/z*: 303 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₀H₁₉N₂O: 303.14919 [M+H]⁺; found: 303.14864.

4-((1-Phenylvinyl)oxy)-2-(*p*-tolyl)quinazoline (18).

Yield: 82% (138 mg); light yellow solid; mp: 173–175 °C; IR (neat): v_{max} = 3060, 3028, 2922, 2853, 1612, 1574, 1554, 1489, 1453, 1384, 1260, 766, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, *J* = 8.1 Hz, 1H),

8.19 (d, J = 8.1 Hz, 2H), 8.00 (d, J = 8.4 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.61 – 7.56 (m, 3H),
7.33 – 7.27 (m, 3H), 7.19 (d, J = 8.0 Hz, 2H), 5.60 (d, J = 1.9 Hz, 1H), 5.28 (d, J = 1.9 Hz,
1H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 160.1, 155.3, 152.5, 140.6, 135.1,
133.7, 129.0, 128.6, 128.4, 128.0, 127.7, 126.5, 126.2, 125.3, 123.3, 114.8, 101.8, 21.4; MS
(ESI): *m/z*: 339 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₃H₁₉ON₂: 339.14919 [M+H]⁺; found: 339.14882.

2-(4-Isopropylphenyl)-4-((1-phenylvinyl)oxy)quinazoline (19).

Yield: 86% (157 mg); white solid; mp: 175–177 °C; IR (neat): $v_{max} =$ 3062, 2959, 2922, 2852, 1605, 1575, 1555, 1489, 1453, 1384, 1347, 1261, 772, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (d, J = 8.1 Hz, 1H), 8.23 (dd, J = 8.0, 3.8 Hz, 2H), 8.01 (d, J = 8.3 Hz, 1H), 7.82

(t, J = 7.7 Hz, 1H), 7.60 (d, J = 7.3 Hz, 2H), 7.55 (t, J = 7.6 Hz, 1H), 7.30 – 7.23 (m, 4H), 7.20 – 7.11 (m, 1H), 5.59 (d, J = 2.0 Hz, 1H), 5.27 (d, J = 2.0 Hz, 1H), 2.96 – 2.86 (m, 1H), 1.24 (dd, J = 6.9, 2.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 166.0, 160.1, 155.2, 152.5, 151.5, 135.4, 135.1, 133.7, 128.6, 128.5, 128.4, 128.0, 127.0, 126.3, 125.2, 123.3, 114.7, 101.8, 34.0, 23.8; MS (ESI): m/z: 367 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₅H₂₃N₂O: 367.18049 [M+H]⁺; found: 367.17921.

2-(4-Methoxyphenyl)-4-((1-phenylvinyl)oxy)quinazoline (20).

Yield: 86% (152 mg); light brown solid; mp: 177–178 °C; IR (neat): $v_{max} = 3019, 2925, 1605, 1572, 1552, 1515, 1452, 1349, 1215, 907,$ 748, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.36 (dd, J = 8.1, 0.7

Hz, 1H), 8.26 (d, J = 8.9 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.61 – 7.55 (m, 3H), 7.34 – 7.28 (m, 3H), 6.90 (d, J = 8.9 Hz, 2H), 5.60 (d, J = 2.0 Hz, 1H), 5.28 (d, J = 2.0 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 161.7, 159.8, 155.3, 135.1, 133.8, 130.1, 129.1, 128.7, 128.4, 127.8, 127.5, 126.3, 125.2, 123.4, 114.6, 113.6, 101.9, 55.3; MS (ESI): m/z: 355 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₃H₁₉O₂N₂: 355.14410 [M+H]⁺; found: 355.14349.

2-(3-Methoxyphenyl)-4-((1-phenylvinyl)oxy)quinazoline (21).

Yield: 80% (141 mg); yellow solid; mp: 178–180 °C; IR (neat): $v_{max} =$ 3063, 3001, 2929, 2836, 1599, 1575, 1559, 1491, 1457, 1345, 1256, 768, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (dd, J = 8.1, 0.8

Hz, 1H), 8.02 (t, J = 7.0 Hz, 1H), 7.94 (dd, J = 7.6, 1.1 Hz, 1H), 7.84 – 7.82 (m, 1H), 7.61 – 7.57 (m, 2H), 7.42 (d, J = 7.2 Hz, 2H), 7.38 (d, J = 1.8 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.16 – 7.14 (m, 1H), 6.97 – 6.94 (m, 1H), 5.60 (d, J = 2.0 Hz, 1H), 5.28 (d, J = 2.0 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.0, 159.6, 155.3, 152.4, 144.7, 133.8, 129.9, 129.2, 128.6, 128.4, 128.1, 126.8, 126.3, 125.9, 125.1, 123.3, 120.9, 117.2, 112.7, 101.9, 55.2; MS (ESI): m/z: 355 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₃H₁₉N₂O₂: 355.14410 [M+H]⁺; found: 355.14291.

2-(4-Fluorophenyl)-4-((1-phenylvinyl)oxy)quinazoline (22).

Yield: 79% (135 mg); pale yellow solid; mp: 141–143 °C; IR (neat): v_{max} = 2924, 2853, 1720, 1602, 1573, 1510, 1492, 1268, 1151, 1109, 909, 767, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (dd, *J* = 8.1, 0.6 Hz,

1H), 8.29 (dd, J = 8.8, 5.7 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.62 – 7.58 (m, 3H), 7.34 - 7.28 (m, 2H), 7.18 (dd, J = 7.2, 4.7 Hz, 1H), 7.06 (t, J = 8.7 Hz, 2H), 5.61 (d, J = 2.0 Hz, 1H), 5.27 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 163.3, 159.0, 155.3, 152.4, 135.0, 134.0, 130.5 (d, J = 8.6 Hz), 129.1, 128.7, 128.4, 128.0, 126.8, 126.2, 125.2, 123.4, 115.19 (d, J = 21.6 Hz), 101.9; MS (ESI): m/z: 343 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆FN₂O: 343.12412 [M+H]⁺; found: 343.12450.

2-(4-Chlorophenyl)-4-((1-phenylvinyl)oxy)quinazoline (23).

Yield: 77% (138 mg); pale yellow solid; mp: 135–136 °C; IR (neat): v_{max} = 2923, 2852, 1621, 1574, 1555, 1494, 1453, 1261, 1091, 945, 770, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.39 (d, J = 8.1 Hz, 1H), 8.23 (d, J= 8.5 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.91 - 7.86 (m, 1H), 7.64 - 7.58 (m, 3H), 7.35 (d, J =8.4 Hz, 2H), 7.32 - 7.27 (m, 2H), 7.23 - 7.17 (m, 1H), 5.61 (d, J = 1.5 Hz, 1H), 5.27 (d, J =1.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 158.9, 155.2, 152.4, 136.6, 136.2, 134.0, 129.7, 129.1, 128.7, 128.4, 128.1, 126.9, 126.2, 125.2, 123.4, 114.8, 101.9; MS (ESI): m/z: 359 $[M+H]^+$; HRMS (ESI): m/z: calcd for C₂₂H₁₆ClN₂O: 359.09457 $[M+H]^+$; found: 359.09517.

2-(4-Bromophenyl)-4-((1-phenylvinyl)oxy)quinazoline (24).

Yield: 74% (149 mg); yellow solid; mp: 125–127 °C; IR (neat): $v_{max} =$ 3058, 3028, 2923, 2853, 1620, 1574, 1554, 1491, 1451, 1260, 768, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.38 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.5 Hz, 2H), 8.01 (d, J = 8.4 Hz, 1H), 7.90 – 7.85 (m, 1H), 7.63 – 7.55 (m, 3H), 7.51 (d, J = 8.6 Hz, 1H), 7.38 - 7.28 (m, 3H), 7.21 - 7.16 (m, 1H), 5.60 (d, J = 2.0 Hz, 1H), 5.27 (d, J =2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 166.1, 159.0, 155.2, 152.4, 136.6, 135.0, 134.0,

131.4, 130.0, 128.7, 128.4, 128.2, 128.1, 127.0, 125.2, 123.4, 114.9, 102.0; MS (ESI): m/z:

405 $[M+H]^+$; HRMS (ESI): m/z: calcd for C₂₂H₁₆BrN₂O: 403.04405 $[M+H]^+$; found: 403.04432.

2-(4-Nitrophenyl)-4-((1-phenylvinyl)oxy)quinazoline (25).

Yield: 77% (142 mg); white solid; mp: 179–180 °C; IR (neat): $v_{max} =$ 2921, 2852, 1727, 1593, 1517, 1343, 1219, 1109, 970, 854, 772, 687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.44 (d, J = 8.9 Hz, 2H), 8.22 (d, J = 8.9 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.97 – 7.94 (m, 2H), 7.70 (t, J = 7.6 Hz, 1H), 7.61 – 7.55 (m, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.36 – 7.31 (m, 2H), 5.63 (d, J = 2.0 Hz, 1H), 5.29 (d, J = 2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 166.3, 157.7, 155.2, 152.3, 149.0, 143.5, 134.3, 133.0, 129.1, 128.9, 128.5, 128.4, 128.2, 127.8, 125.2, 123.4, 115.1, 102.1; MS (ESI): m/z: 370 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆N₃O₃: 370.11862 [M+H]⁺; found: 370.11743.

4-((1-Phenylvinyl)oxy)-2-(thiophen-2-yl)quinazoline (26).

Yield: 67% (110 mg); light yellow solid; mp: 165–166 °C; IR (neat): $v_{max} =$ 3055, 3025, 2922, 2852, 1620, 1598, 1575, 1491, 1444, 1384, 1313, 1263, 1219, 1026, 896, 771, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.94 (dd, J = 7.4, 1.0 Hz, 2H), 7.58 - 7.51 (m, 1H), 7.45 - 7.40 (m, 2H), 7.36 - 7.33 (m, 2H), 7.30 - 7.23(m, 2H), 7.20 - 7.12 (m, 2H), 7.08 (dd, J = 5.9, 2.7 Hz, 1H), 5.57 (d, J = 2.0 Hz, 1H), 5.28 (d, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.8, 155.2, 152.3, 149.8, 146.3, 132.9, 129.3, 129.0, 128.4, 128.2, 127.7, 127.0, 126.1, 125.2, 123.3, 116.2, 114.1, 101.9; MS (ESI): m/z: 331 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₀H₁₅N₂OS: 331.08996 [M+H]⁺; found: 331.08854.

2-(Furan-2-yl)-4-((1-phenylvinyl)oxy)quinazoline (27).

Yield: 71% (111 mg); white solid; mp: 153–155 °C; IR (neat): $v_{max} = 3055$, 3024, 2921, 2852, 1730, 1598, 1574, 1491, 1443, 1312, 1263, 1219, 1025, 897, 772, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.94 (dd, J = 5.1, 2.8 Hz, 2H), 7.55 – 7.51 (m, 1H), 7.45 – 7.40 (m, 2H), 7.36 – 7.27 (m, 4H), 7.20 – 7.17 (m, 2H), 7.08 - 7.06 (m, 1H), 5.54 (d, J = 3.4 Hz, 1H), 5.31 (d, J = 3.4 Hz, 1H); ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 165.8, 157.6, 149.8, 146.3, 143.9, 142.0, 132.9, 129.0, 128.4, 128.2, 128.0, 127.7, 127.0, 126.5, 126.1, 116.2, 114.1, 101.9; MS (ESI): *m/z*: 315 [M+H]⁺; HRMS (ESI): *m/z*: calcd for C₂₀H₁₅N₂O₂: 315.11280 [M+H]⁺; found: 315.11146.

6-Chloro-2-phenyl-4-((1-phenylvinyl)oxy)quinazoline (28).

Yield: 72% (129 mg); yellow solid; mp: 151–152 °C; IR (neat): $v_{max} =$ 3059, 3026, 2921, 2851, 1571, 1555, 1260, 764, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, J = 2.3 Hz, 1H), 8.28 (dd, J = 7.7, 1.9

Hz, 2H), 7.97 (d, J = 9.0 Hz, 1H), 7.81 (dd, J = 9.0, 2.3 Hz, 1H), 7.59 (dd, J = 8.0, 1.5 Hz, 1H), 7.42 - 7.37 (m, 2H), 7.35 - 7.27 (m, 3H), 7.21 - 7.16 (m, 2H), 5.61 (d, J = 2.1 Hz, 1H), 5.28 (d, J = 2.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 165.3, 160.3, 155.1, 150.9, 134.7, 130.7, 129.8, 128.8, 128.5, 128.3, 128.1, 127.8, 126.2, 125.2, 122.5, 115.5, 114.2, 102.1; MS (ESI): m/z: 359 [M+H]⁺; HRMS (ESI): m/z: calcd for C₂₂H₁₆ClN₂O: 359.09457 [M+H]⁺; found: 359.09480.

2-Phenyl-4-((1-phenylvinyl)oxy)thieno[3,2-d]pyrimidine (29).

Yield: 77% (127 mg); colorless solid; mp: 148–149 °C IR (neat): $v_{max} =$ 3057, 3027, 2923, 2853, 1722, 1599, 1565, 1526, 1260, 773, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.26 (d, *J* = 2.0 Hz, 1H), 8.24 (dd, *J* = 2.7, 1.8

Hz, 1H), 7.94 (d, J = 5.4 Hz, 1H), 7.60 (dd, J = 8.2, 1.5 Hz, 1H), 7.58 (d, J = 5.4 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.39 (dd, J = 5.2, 1.9 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.25 – 7.23 (m, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.14 (d, J = 7.1 Hz, 1H), 5.60 (d, J = 2.2 Hz, 1H), 5.30 (d, {J = 2.2 Hz, 1

2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 164.1, 163.3, 161.2, 154.8, 144.4, 137.5, 134.7, 133.8, 130.2, 129.3, 129.1, 128.6, 128.3, 125.3, 115.4, 102.0; MS (ESI): *m/z*: 331 [M+H]⁺.
4-((1-Phenylvinyl)oxy)-2-(3,4,5-trimethoxyphenyl)quinazoline (30).

Yield: 91% (188 mg); pale yellow solid; mp: 136–137 °C; IR (neat): $v_{max} = 3057, 2933, 2838, 1598, 1492, 1454, 1376, 770, 698 cm^{-1}; {}^{1}H$ NMR (500 MHz, CDCl₃): δ 8.38 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1H), 7.85 (t, *J* = 7.7 Hz, 1H), 7.59 – 7.57

(m, 2H), 7.44 – 7.40 (m, 1H), 7.37 – 7.33 (m, 1H), 7.29 – 7.23 (m, 2H), 7.18 – 7.17 (m, 1H), 5.58 (s, 1H), 5.27 (s, 1H), 3.87 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): δ 165.8, 159.3, 155.3, 152.8, 152.3, 140.1, 133.8, 132.9, 128.6, 128.4, 127.9, 126.6, 126.1, 124.9, 123.3, 114.5, 105.3, 101.7, 60.7, 55.9; MS (ESI): *m/z*: 415 [M+H]⁺; HRMS (ESI): *m/z* calcd for C₂₅H₂₃N₂O₄: 415.16523 [M+H]⁺; found: 415.16502.

2-((1-Phenylvinyl)oxy)pyridine (31).¹

Yield: 78% (76 mg); white solid; IR (neat): $v_{max} = 2922$, 2852, 1728, 1643, 1592, 1492, 1466, 1429, 1266, 1243, 1075, 963, 772, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 4.8, 1.3 Hz, 1H), 7.66 –

7.62 (m, 1H), 7.59 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.34 – 7.28 (m, 3H), 6.96 – 6.92 (m, 2H), 5.42 (d, *J* = 2.0 Hz, 1H), 4.96 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 163.1, 156.1, 147.9, 139.3, 134.8, 128.6, 128.3, 125.4, 118.3, 111.4, 99.1; MS (ESI): *m/z*: 198 [M+H]⁺.

1. J. Yang and G. B. Dudley, Adv. Synth. Catal., 2010, 352, 3438.

1-Chloro-4-(1-diazoethyl)benzene.

Yield: 94%; ¹H NMR (500 MHz, CDCl₃): δ 7.89 (d, J = 8.6 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 2.59 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 196.7, 139.5, 135.3, 129.6, 128.8, 26.5; MS (ESI): m/z: 189 [M+Na]⁺.

1.5 ¹H and ¹³C NMR Spectra for compounds (1-30)

Chemical shifts:

¹H: δ 8.40 (1H, H-5), 8.22 (2H, H-9, H-9'), 8.04 (1H, H-7), 8.02 (1H, H-8), 7.76 (1H, H-6) 7.62 (1H, H-17), 7.48 (1H, H-11), 7.46 (2H, H-10, H-10'), 7.37 (1H, H-15), 7.27 (1H, H-14), 7.20 (1H, H-16), 5.72 (1H, H_b-13), 5.61 (1H, H_a-13).

¹H-Chemical shifts

¹³C: 165.41, 159.97, 158.58, 158.32, 151.79, 149.24, 136.79, 134.98, 131.04, 130.85, 128.61, 128.40, 127.85, 127.82, 124.77, 123.45, 122.63, 116.31, 114.10, 107.46, 39.50.

The structure of compound **4** was derived by extensive NMR experiments including 2-D Double Quantum Filtered Correlation Spectroscopy (DQF-COSY), Nuclear Overhauser Effect Spectroscopy (NOESY) and Heteronuclear-Single Quantum correlation (HSQC) and Heteronuclear-multiple Quantum correlation (HMBC) experiments. The resonance signal at 5.72 ppm is giving NOE with 7.62 and peak at 5.61 is interestingly showing weak intense NOE with 8.40 and 8.22 peaks. This NOE observation is initiating the resonance assignments of all the aromatic ring protons of substituted quinazoline ring system of compound **4**. Herein the NOESY correlation structure and expanded NOESY Spectrum of compound **4** (Figure 1 and 2) have been illustrated.

Figure 1. NOE correlations of H_b -13/ H-17, H_a -13/ H-5, H-9

Figure 2. 2D-NOESY-Expansion

¹⁵N-HMBC-Expansion

In Nitrogen Hetero nuclear multiple quantum correlation experiment (¹⁵N-HMBC), H-13 protons be supposed to show 3 bond correlation with Nitrogen (N-2) if fluoro, vinyl substituted phenyl ring was present on (N-2) of the molecule. But observed significant 3-bond correlation between Nitrogen (N-1) and H-8 (δ 8.02) and observed not even 4 bond correlations between N-1 and H-9 (δ 8.22) of the molecule. Remaining spectral assignments were in agreement with assigned structure depicted in Figure 1.

1.7 X-ray crystallography for 4

The CCDC deposition number for **4** is **1514723**; Crystal data: C₂₂H₁₅N₂OF, M = 342.36, 0.45 x 0.32 x 0.20 mm³, monoclinic, space group C2/c (No. 15), a = 38.444(4), b = 6.2239(6), c = 14.5234(13) Å, $\beta = 96.834(3)^\circ$, V = 3450.4(6) Å³, Z = 8, $D_c = 1.318$ g/cm³, $F_{000} = 1424$, CCD area detector, MoK α radiation, $\lambda = 0.71073$ Å, T = 293(2)K, $2\theta_{max} = 56.6^\circ$, 19058 reflections collected, 4173 unique ($R_{int} = 0.030$), Final *GooF* = 1.03, R1 = 0.0443, wR2 = 0.1325, R indices based on 4173 reflections with I > 2σ (I) (refinement on F^2), 235 parameters, $\mu = 0.089$ mm⁻¹, Min and Max Resd. Dens. = -0.17 and 0.26 e/Å³. X-ray data for the compound were collected at room temperature using a Bruker Smart Apex CCD diffractometer. CCDC **1514723** contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://summary.ccdc.cam.ac.uk/structure-summary-form or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk.

Figure 3. ORTEP diagram for compound **4**, with displacement ellipsoids drawn at the 20% probability level.