Rhodium-Catalyzed Enantioselective Hydrogenation of α -amino acrylonitriles: An Efficient Approach to Chiral α -amino nitriles

Xiuxiu Li,^{+a} Cai You,^{+a} Yusheng Yang,^a Fangyuan Wang,^a Shuailong Li,^a Hui Lv,^{*a} and Xumu Zhang^{*ab}

Contents

1 General Information	2
2 General procedure for the synthesis of compound 1	2
3 General procedure for asymmetric hydrogenation of compound 1	2-7
4 NMR spectra of 2	8-23
5 HPLC spectra of 2	24-55

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. NMR spectra were recorded on Bruker ADVANCE III (400 MHz) spectrometers for ¹H NMR and ¹³C NMR. CDCl₃ was the solvent used for the NMR analysis, with tetramethylsilane as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.3 ppm) for ¹³C NMR. Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC analysis was conducted on an Agilent 1260 Series instrument. Column Chromatography was performed with silica gel Merck 60 (300-400 mesh). All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo LTQ-FT mass spectrometer with an electrospray ionization source.

2. General procedure for the synthesis of compound 1

Preparation of **1** according to the literature ^[1]: To a stirred solution of sodium (270 mg, 12 mmol) in ethanol (7.0 mL) was added acetylaminoacetonitrile (980 mg, 10 mmol) at 40-50 °C. Five minutes later, aldehyde (10 mmol) was added and the mixture was stirred for another 2-4 h (monitored by TLC). After it was cooled to room temperature, the mixture was poured into water (30 mL), acidified with 3 N aq. HC1 and allowed to stand overnight. The precipitate was collected, washed with 20% aq. ethanol (2 x 30 mL). The residue was redissolved in EtOAc, and then dried over sodium sulfate. Removing the solvent by rotary evaporation, the product mixture was purified by flash column chromatography using 20-50% ethyl acetate/hexane to give the desired products (total 55-87% yield).

3. General Procedure for Asymmetric Hydrogenation of compound 1

A stock solution was made by mixing $[Rh(NBD)_2]BF_4$ with (*S*, *S*)-Me-DuPhos in a 1:1.1 molar ratio in trifluoroethanol at room temperature for 30 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (0.1 mL, 0.001 mmol) was transferred by syringe into the vials charged with different substrates (0.1 mmol for each) in anhydrous trifluoroethanol (1.0 mL). The vials were subsequently transferred into an autoclave into which hydrogen gas was charged. The reaction was then stirred under H₂ (30 atm) at room temperature for 12 h. The hydrogen gas was released slowly and carefully. The solution was concentrated and passed through a short column of silica gel (eluant: ethyl acetate) to remove the metal complex. The *ee* values of all compounds **2** were determined by HPLC analysis on a chiral stationary phase.

(*S*)-N-(1-cyano-2-phenylethyl)acetamide (2a): White solid; >99% *ee*; $[\alpha]_D^{25} = -56.0$ (c = 0.77, EtOH), Lit ^[2]: $[\alpha]_D = 45.1$ (c = 0.78, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 17.4 min (major), 18.9 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.31 (m, 3H), 7.29 – 7.24 (m, 2H), 6.56 (d, *J* = 8.2 Hz, 1H), 5.14-5.08 (m, 1H), 3.18 – 2.96 (m, 2H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 134.2, 129.6, 129.2, 128.2, 118.5, 41.9, 38.9, 23.0 ppm. **HRMS** calculated [M+H]⁺ for C₁₁H₁₃ON₂ = 189.1022, found: 189.1021.

(*S*)-N-(1-cyano-2-(p-tolyl)ethyl)acetamide (2b): White solid; >99% *ee*; $[\alpha]_D^{25} = -43.8$ (c = 0.80, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 17.0 min (major), 19.2 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.13 (m, 4H), 6.10 (d, *J* = 8.2 Hz, 1H), 5.15-5.09 (m, 1H), 3.10-2.97 (m, 2H), 2.35 (s, 3H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 138.0, 131.0, 130.0, 129.6, 118.5, 41.8, 38.6, 23.1, 21.4 ppm. **HRMS** calculated [M+H]⁺ for C₁₂H₁₅ON₂ = 203.1179, found: 203.1177.

(*S*)-N-(1-cyano-2-(4-methoxyphenyl)ethyl)acetamide (2c): White solid; >99% *ee*; $[\alpha]_D^{25} = -36.8$ (c = 0.85, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 26.2 min (major), 30.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, *J* = 8.6 Hz, 2H), 6.93 – 6.85 (m, 2H), 6.16 (d, *J* = 8.1 Hz, 1H), 5.12-5.07 (m, 1H), 3.80 (s, 3H), 3.08-2.95 (m, 2H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 159.5, 130.8, 126.0, 118.5, 114.7, 55.6, 42.0, 38.2, 23.1 ppm. HRMS calculated [M+H]⁺ for C₁₂H₁₅O₂N₂ = 219.1128, found: 219.1127.

(*S*)-N-(1-cyano-2-(4-fluorophenyl)ethyl)acetamide (2d): White solid; >99% *ee*; $[\alpha]_D^{25} = -43.9$ (c = 0.35, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 19.2 min (major), 20.0 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.10-7.03 (m, 2H), 6.13 (d, *J* = 8.0 Hz, 1H), 5.14-5.09 (m, 1H), 3.11-3.00 (m, 2H), 2.00 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 164.0, 161.5, 131.4, 131.3, 129.9, 129.9, 118.3, 116.4, 116.1, 41.9, 38.3, 23.1 ppm. **HRMS** calculated

 $[M+H]^+$ for $C_{11}H_{12}ON_2F = 207.0928$, found: 207.0926.

(*S*)-N-(2-(4-chlorophenyl)-1-cyanoethyl)acetamide (2e): White solid; >99% *ee*; $[\alpha]_D^{25} = -32.6$ (c = 0.67, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 93:7; flow rate = 0.5 mL/min; UV detection at 220 nm; t_R = 26.4 min (major), 36.1min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.86 (d, *J* = 8.3 Hz, 1H), 5.20-5.12 (m, 1H), 3.12-3.00 (m, 2H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 134.4, 132.5, 131.1, 129.5, 118.1, 41.6, 38.5, 23.1 ppm. **HRMS** calculated [M+H]⁺ for C₁₁H₁₂ON₂Cl = 223.0633, found: 223.0630.

(*S*)-N-(2-(4-bromophenyl)-1-cyanoethyl)acetamide (2f): White solid; >99% *ee*; $[\alpha]_D^{25} = -29.9$ (c = 0.73, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 93:7; flow rate = 0.6 mL/min; UV detection at 220 nm; t_R = 23.2 min (major), 31.7 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.4 Hz, 2H), 5.86 (d, *J* = 8.3 Hz, 1H), 5.20-5.12 (m, 1H), 3.12-2.99 (m, 2H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 133.1, 132.4, 131.4, 122.4, 118.1, 41.6, 38.5, 23.1 ppm. **HRMS** calculated [M+H]⁺ for C₁₁H₁₂ON₂Br = 267.0128, found: 267.0125.

2g

(*S*)-N-(2-(4-(tert-butyl)phenyl)-1-cyanoethyl)acetamide (2g): Yellow oil; 95% *ee*; $[\alpha]_D^{25} = -23.7$ (c = 0.83, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 11.0 min (major), 12.8 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.34 (m, 2H), 7.23-7.19 (m, 2H), 6.20 (d, *J* = 8.4 Hz, 1H), 5.17-5.10 (m, 1H), 3.12-2.98 (m, 2H), 1.99 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 151.2, 131.0, 129.4, 126.2, 118.6, 41.8, 38.4, 34.8, 31.5, 23.1 ppm. **HRMS** calculated [M+H]⁺ for C₁₅H₂₁ON₂ = 245.1648, found: 245.1645.

(*S*)-N-(1-cyano-2-(m-tolyl)ethyl)acetamide (2h): White solid; >99% *ee*; $[\alpha]_D^{25} = -53.1$ (c = 0.47, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 18.4 min (major), 20.5 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.23 (m, 1H), 7.17 – 7.04 (m, 3H), 6.42 – 6.18 (m, 1H), 5.14-5.09 (m, 1H), 3.11-2.97 (m, 2H), 2.36 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 139.0, 134.1, 134.0, 129.1, 129.0, 126.7, 118.5, 41.8, 38.9, 23.0, 21.6 ppm. **HRMS** calculated [M+H]⁺ for C₁₂H₁₅ON₂ = 203.1179, found: 203.1177.

(*S*)-N-(1-cyano-2-(o-tolyl)ethyl)acetamide (2i): White solid; >99% *ee*; $[\alpha]_D^{25} = -47.1$ (c = 0.33, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 97:3; flow rate = 0.5 mL/min; UV detection at 220 nm; t_R = 62.0 min (minor), 65.5 min (major); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.16 (m, 4H), 6.19 (s, 1H), 5.15-5.09(m, 1H), 3.12 (d, *J* = 7.3 Hz, 2H), 2.38 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 137.0, 132.5, 131.2, 130.4, 128.3, 126.7, 118.6, 100.2, 41.2, 36.5, 23.1, 19.7 ppm. **HRMS** calculated [M+H]⁺ for C₁₂H₁₅ON₂ = 203.1179, found: 203.1178.

(*S*)-N-(2-(2-bromophenyl)-1-cyanoethyl)acetamide (2j): White solid; 98% *ee*; $[\alpha]_D^{25} = -38.1$ (c = 0.69, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 24.4 min (major), 26.3 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 8.0, 1.1 Hz, 1H), 7.41 – 7.26 (m, 3H), 7.21 – 7.12 (m, 1H), 5.15 (q, *J* = 7.8 Hz, 1H), 3.34-3.22 (m, 2H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 133.9, 133.2, 131.8, 129.7, 128.0, 124.7, 118.1, 40.6, 38.7, 22.8 ppm. **HRMS** calculated [M+H]⁺ for C₁₁H₁₂ON₂Br = 267.0128, found: 267.0125.

(*S*)-N-(1-cyano-2-(naphthalen-2-yl)ethyl)acetamide (2k): White solid; >99% *ee*; $[\alpha]_D^{25} = -34.5$ (c = 0.67, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 24.2 min (major), 28.3 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.80 (m, 3H), 7.71 (s, 1H), 7.51-7.47 (m, 2H),

7.37 (d, J = 8.4 Hz, 1H), 6.35 (d, J = 8.3 Hz, 1H), 5.22-5.17(m, 1H), 3.27-3.14 (m, 2H), 1.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 133.6, 133.0, 131.6, 129.1, 128.8, 128.0, 127.3, 126.8, 126.5, 118.5, 41.8, 39.1, 23.0 ppm. **HRMS** calculated [M+H]⁺ for C₁₅H₁₅ON₂ = 239.1179, found: 239.1176.

(*S*)-N-(1-cyano-2-(naphthalen-1-yl)ethyl)acetamide (2l): Yellow solid; 93% *ee*; $[\alpha]_D^{25} = -30.1$ (c = 0.71, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 18.9 min (major), 21.3 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 1H), 7.88 (d, *J* = 7.9 Hz, 1H), 7.85 - 7.80 (m, 1H), 7.59 - 7.49 (m, 2H), 7.48 - 7.41 (m, 2H), 6.39 (d, *J* = 8.1 Hz, 1H), 5.32-5.24 (m, 1H), 3.64-3.45 (m, 2H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 134.2, 132.0, 130.3, 129.4, 129.1, 128.6, 127.1, 126.3, 125.8, 123.2, 118.4, 41.9, 36.3, 23.0 ppm. **HRMS** calculated [M+H]⁺ for C₁₅H₁₅ON₂ = 239.1179, found: 239.1176.

(*S*)-N-(1-cyano-2-(thiophen-2-yl)ethyl)acetamide (2m): White solid; >99% *ee*; $[\alpha]_D^{25} = -36.9$ (c = 0.57, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 94:6; flow rate = 0.6 mL/min; UV detection at 220 nm; t_R = 26.1 min (major), 27.8 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.26 (m, 1H), 7.09 – 6.99 (m, 2H), 6.39 (s, 1H), 5.18-5.11 (m, 1H), 3.41 – 3.22 (m, 2H), 2.01 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 135.4, 128.0, 127.8, 126.0, 118.2, 41.8, 33.2, 23.1 ppm. **HRMS** calculated [M+H]⁺ for C₉H₁₁ON₂S = 195.0587, found: 195.0586.

(*S*)-N-(1-cyano-2-(furan-2-yl)ethyl)acetamide (2n): colorless oil; >99% *ee*; $[\alpha]_D^{25} = -19.2$ (c = 0.31, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 19.8 min (major), 24.1 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 1.7 Hz, 1H), 6.39-6.36 (m, 1H), 6.30 (d, *J* = 3.2 Hz, 1H), 6.12 (d, *J* = 7.3 Hz, 1H), 5.21-5.16 (m, 1H), 3.18-3.14 (m, 2H), 2.04 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 148.6, 143.2, 117.9, 111.1, 109.5, 40.2, 31.7, 23.2 ppm. **HRMS** calculated [M+H]⁺ for C₉H₁₁O₂N₂ = 179.0815, found: 179.0813.

(*S*)-N-(1-cyano-3-methylbutyl)acetamide (20): colorless oil; 97% *ee*; $[\alpha]_D^{25} = -36.5$ (c = 0.46, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak OJ column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 210 nm; t_R = 11.6 min (minor), 13.5 min (major); ¹H NMR (400 MHz, CDCl₃) δ 6.02 (d, *J* = 7.6 Hz, 1H), 4.92 (q, *J* = 8.2 Hz, 1H), 2.04 (s, 3H), 1.86-1.71 (m, 2H), 1.67-1.60 (m, 1H), 0.98 (dd, *J* = 6.5, 1.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 119.1, 42.1, 39.2, 25.1, 23.1, 22.5, 22.1 ppm. HRMS calculated [M+H]⁺ for C₈H₁₅ON₂ = 155.1179, found: 155.1177.

(*S*,*E*)-N-(1-cyano-4-phenylbut-3-en-1-yl)acetamide (2p): Yellow solid; >99% *ee*; $[α]_D^{25} = -13.6$ (c = 0.70, EtOH); The enantiomeric excess was determined by HPLC on Chiralpak AD column, hexane: isopropanol = 95: 5; flow rate = 1.0 mL/min; UV detection at 220 nm; t_R = 18.5 min (major), 20.1 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.25 (m, 6H), 6.59 (d, *J* = 15.8 Hz, 1H), 6.26 – 6.11 (m, 2H), 5.07-5.01 (m, 1H), 2.80 – 2.60 (m, 2H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.8, 169.8, 136.3, 136.3, 129.0, 128.4, 126.7, 121.5, 118.5, 40.4, 36.7, 23.1 ppm. **HRMS** calculated [M+H]⁺ for C₁₃H₁₅ON₂ = 215.1179, found: 215.1178.

References

- 1. P. Zeng, Y. Hu, H. Hu. Synth. Commun., 1995, 25, 1167-1172;
- 2. R. S. Atkinson, M. P. Coogan, I. S. T. Lochrie. J. Chem. Soc., Perkin Trans. 1, 1997, 897-900.

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 11 (ppm)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5. HPLC spectra of 2

2a

AcHN₂₂, CN

Data File E:\DATA\LXX\C-BIA02HUN\C-PH-RAC 2016-06-14 10-40-50\092-0201.D Sample Name: C-Ph-Rac

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 92 Injection Date : 6/14/2016 11:09:55 AM Inj: 1 Inj Volume : 3.000 µl Acq. Method : E:\DATA\LXX\C-BIA02HUN\C-PH-RAC 2016-06-14 10-40-50\VWD-AD (1-6)-95-5-1ML -3UL-220-40MIN.M Last changed : 6/14/2016 10:40:51 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-BIAOZHUN\C-PH-RAC 2016-06-14 10-40-50\VWD-AD(1-6)-95-5-1ML -3UL-220-40MIN.M (Sequence Method) : 6/14/2016 1:27:44 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm (E:DATAYLXXC-BHACZHUNKC-PH-RAC 2018-08-1410-40-500092-0201.D) mAU 14 12 10 189.51 8 02.78° 18,405 6 4 2 0 -2 17 16 16.5 17.5 18 18.5 19 19.5 _min Area Percent Report _____ Signal 1.0000 Sorted By : Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 1 17.226 MM 0.4737 195.51149 2 18.495 BB 0.4676 188.24924 6.87861 50.9462 6.22795 49.0538 Totals : 383.76073 13.10656 *** End of Report ***

1260HPLC-VWD 6/14/2016 1:27:53 PM SYSTEM

Data File E:\DATA\LXX\C-BIA0ZHUN\C-45 2016-06-04 10-12-27\094-0401.D Sample Name: c-45-3 Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 4 Location : Vial 94 Injection Date : 6/4/2016 11:36:29 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-BIA0ZHUN\C-45 2016-06-04 10-12-27\VWD-AD(1-6)-95-5-1.0ML-Aca. Method 3UL-220-30MIN.M Last changed : 6/4/2016 10:12:28 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-BIA0ZHUN\C-45 2016-06-04 10-12-27\WWD-AD(1-6)-95-5-1.0ML-3UL-220-30MIN.M (Sequence Method) Last changed : 6/6/2016 9:16:06 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATANLXX\C-BHACZHUN\C-45 2016-06-04 10-12-270094-0401.D) mAU 175 150 125 2800.18 4 100 75 50 3.9978 25 00 00 00 00 00 00 0 ----21 22 16 18 19 min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|----|-----|-----|-----| 1 17.424 MM 0.5045 2600.18091 85.90569 99.8481 2 18.900 MM 0.3078 3.95578 2.14172e-1 0.1519 Totals : 2604.13669 86.11986 *** End of Report ***

1260HPLC-VWD 6/6/2016 9:16:42 PM SYSTEM

Data File E:\DATA\LXX\C-P-CH3\C-47 2016-06-07 10-34-34\092-0201.D Sample Name: p-Me-Rac

*** End of Report ***

1260HPLC-VWD 6/7/2016 12:46:50 PM SYSTEM

Data File E:\DATA\LXX\C-P-CH3\C-47 2016-06-07 10-34-34\093-0301.D Sample Name: c-47 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seg. Line : 3 Location : Vial 93 Injection Date : 6/7/2016 11:36:49 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-CH3\C-47 2016-06-07 10-34-34\VWD-AD(1-6)-95-5-1ML-3UL-Acg. Method 50MIN-220NM-.M Last changed : 6/7/2016 10:34:34 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-CH3\C-47 2016-06-07 10-34-34\VWD-AD(1-6)-95-5-1ML-3UL-50MIN-220NM-.M (Sequence Method) Last changed : 6/7/2016 12:44:42 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm(E\DATA\LX\\C-P-CH3\C-47 2016-06-07 10-3434093-0301.D) mAU 1. 18^{330,3} 700 -99.95 89.96 89.96 600 -500 -400 · 300 · 200 100 0 14 22 min 16 Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 16.994 MM 0.4782 1.63303e4 569.18378 99.4403 2 19.184 MM 0.4122 91.90754 3.71598 0.5597 Totals : 1.64222e4 572.89976 *** End of Report ***

1260HPLC-VWD 6/7/2016 12:45:30 PM SYSTEM

Data File E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\092-0201.D Sample Name: C-48-1-Rac

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 92 Injection Date : 6/15/2016 11:59:04 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\VWD-AD(1-6)-95-5-1ML-Acq. Method 3UL-220-40MIN.M Last changed : 6/15/2016 11:47:30 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) : 6/15/2016 1:38:53 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:DATAVLXX\C-P-OCH3VC-48-AD 2016-06-15 11-47-300092-0201.D) mAU 250 Area Stario Shot Bigh 22 200 -150 100 -50 0. <u>30</u> <u>3</u>2 min Area Percent Report Sorted By Signal : Multiplier : 1.0000 Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 1 26.181 MM 0.7486 8050.75098 179.23079 49.9892 2 29.608 MM 0.8399 8054.23486 159.83328 50.0108 Totals : 1.61050e4 339.06407 *** End of Report ***

Data File E:\DATA\LXX\C-P-0CH3\C-48-AD 2016-06-15 11-47-30\093-0301.D Sample Name: C-48-2 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 3 Location : Vial 93 Injection Date : 6/15/2016 12:39:48 PM Inj: 1 inj . Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\VWD-AD(1-6)-95-5-1ML-Acg. Method 3UL-220-40MIN.M Last changed : 6/15/2016 11:47:30 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) : 6/15/2016 1:40:04 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm(E:\DATA\LXX\C-P-OCH3\C-48-AD 2016-06-15 11-47-30\093-0301.D) mAU 700 -Straight 09 600 -500 · 400 · 300 · 200 .734.TSDA 100 29.961 0 24 <u>3</u>2 min Area Percent Report Sorted By Signal : Multiplier : 1.0000 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 26.246 MM 0.7392 2.17109e4 489.53763 99.8402 2 29.961 MM 0.5834 34.75039 9.92680e-1 0.1598 Totals : 2.17456e4 490.53031 *** End of Report ***

1260HPLC-VWD 6/15/2016 1:40:08 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\093-0901.D Sample Name: p-F-Rac

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 9 Location : Vial 93 Injection Date : 7/6/2016 1:09:32 PM Inj: 1 Inj Volume : 5.000 µl Acq. Method : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-95-5-1ML-5UL-220NM-40MIN.M Last changed : 7/6/2016 1:01:40 PM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-95-5-1ML-5UL-220NM-40MIN.M (Sequence Method) Last changed : 7/6/2016 9:05:20 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LX\C-P-FVC-752016-07-0608-29-26\093-0901.D) mAU 80 -70 60 -19.775 12 Angen (1928) 50 -40 30 20 -10 0 18 źò 22 24 26 min _____ Area Percent Report Sorted By : Signal Multiplier 1.0000 : Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAŬ] % 1 19.775 BB 0.5414 1634.88477 46.70587 48.9824 2 25.121 MM 0.7655 1702.81262 37.07634 51.0176 Totals : 3337.69739 83.78221 _____ *** End of Report ***

1260HPLC-VWD 7/6/2016 9:05:23 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\097-2001.D Sample Name: C-75-3

------Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 20 Location : Vial 97 Acq. Instrument : 1250nrbc-vez Injection Date : 7/6/2016 8:23:38 PM Inj : 1 Inj Volume : 5.000 µl : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-95-5-1ML-5UL-Acg. Method 220NM-40MIN.M Last changed : 7/6/2016 1:01:40 PM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-95-5-1ML-5UL-220NM-40MIN.M (Sequence Method) Last changed : 7/6/2016 9:34:06 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATANLXX\C-P-FVC-75 2016-07-06 08-29-26\097-2001.D) mAU 250 10-200 10-200 10-200 200 -150 -100 -50 Sport B 2100 ο 24 18 <u>20</u> 26 22 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] % 1 19.208 MM 0.6645 7651.29248 191.89857 99.6197 2 25.053 MM 0.4620 29.21063 1.05372 0.3803 7680.50311 192.95229 Totals : *** End of Report ***

1260HPLC-VWD 7/6/2016 9:34:14 PM SYSTEM

Data File E:\DATA\LXX\C-P-CL\C-51-1-AD-2 2016-06-17 14-11-35\092-1201.D Sample Name: C-51-1

Acq. Operator	: SYSTEM Seq. Line : 12
Acq. Instrument	: 1260HPLC-VWD Location : Vial 92
Injection Date	: 6/17/2016 8:39:19 PM Inj : 1
-	Inj Volume : 3.000 µl
Acq. Method	: E:\DATA\LXX\C-P-CL\C-51-1-AD-2 2016-06-17 14-11-35\VWD-AD(1-6)-93-7-0.
-	5ML-3UL-220-60MIN.M
Last changed	: 6/17/2016 9:39:09 PM by SYSTEM
-	(modified after loading)
Analysis Method	: E:\DATA\LXX\C-P-CL\C-51-1-AD-2 2016-06-17 14-11-35\VWD-AD(1-6)-93-7-0.
-	5ML-3UL-220-60MIN.M (Sequence Method)
Last changed	: 6/17/2016 9:51:30 PM by SYSTEM
Dabo onangea	(modified after loading)
Additional Info	· · · · · · · · · · · · · · · · · · ·
VWD1A.Wa	elen othe 220 nm (E/DATA/LXAC-P-CLC-511-AD-2 2016-06-17 14-11-35092-1201.D)
	••••••••••••••••••••••••••••••••••••••
1	
1 800 1	
1	
	0
600 -	9
	- 24
1	A contract of the second se
1	
	() 89
400 -	÷
200 -	
1 1	

Area Percent Report

z'n

So	cted	Ву		:	Sign	nal		
Mu.	ltipl	lier		:	1.00	000		
Di:	lutio	on		:	1.00	000		
Do	not	use	Multiplier	6	Dilution	Factor	with	ISTDs

Signal 1: VWD1 A, Wavelength=220 nm

15

o -

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
 1 2	26.450 35.533	- BB VV	0.6113	 2.20937e4 2.21199e4	- 555.21405 383.03159	 49.9703 50.0297
Tota:	ls :			4.42136e4	938.24564	

1260HPLC-VWD 6/17/2016 9:51:33 PM SYSTEM

Page 1 of 1

40

min

Data File E:\DATA\LXX\C-P-CL\C-53 2016-06-20 09-45-13\092-0401.D Sample Name: C-53 Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 4 Location : Vial 92 Injection Date : 6/20/2016 11:28:22 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-CL\C-53 2016-06-20 09-45-13\VWD-AD(1-6)-93-7-0.5ML-3UL-Acg. Method 220-60MIN.M : 6/20/2016 11:32:12 AM by SYSTEM Last changed (modified after loading) Analysis Method : E:\DATA\LXX\C-P-CL\C-53 2016-06-20 09-45-13\VWD-AD(1-6)-93-7-0.5ML-3UL-220-60MIN.M (Sequence Method) Last changed : 6/20/2016 12:34:52 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LXXC-P-CL\C-53 2016-06-20 09-45-13/092-0401.D) mAU 600 E. HART? 500 8 400 300 200 100 0 <u>10</u> <u>15</u> <u>20</u> 30 4Ò min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] [mAU*s] # [min] [mAU] ÷ ----|-----|-----|------|------| 1 26.386 MM 0.6558 1.54573e4 392.85995 99.5585 2 36.145 MM 0.5956 68.54111 1.91814 0.4415 Totals : 1.55259e4 394.77809

1260HPLC-VWD 6/20/2016 12:34:55 PM SYSTEM

Data File E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\092-0701.D Sample Name: C-57-1-Rac

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 7 Location : Vial 92 Injection Date : 6/23/2016 12:03:52 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\VWD-AD(1-6)-93-7-0.6ML-Acq. Method 3UL-220-60MIN.M : 6/23/2016 11:30:34 AM by SYSTEM Last changed Analysis Method : E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\VWD-AD(1-6)-93-7-0.6ML-3UL-220-60MIN.M (Sequence Method) Last changed : 6/23/2016 1:48:40 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAVLXX\C-P-BR\C-57-AD 2016-06-23 08-57-35/092-0701.D) mAU 250 S. (189), 5 200 -Strate Tak 3.5 150 100 50 0 22 24 28 28 30 32 20 min _____ Area Percent Report Sorted By : Signal Multiplier 1.0000 : Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] % 1 23.288 MM 0.5897 7080.12891 200.10556 50.1281 2 31.388 MM 0.8100 7043.94824 144.94562 49.8719 Totals : 1.41241e4 345.05118 _____ *** End of Report ***

1260HPLC-VWD 6/23/2016 1:48:44 PM SYSTEM

Data File E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\093-0801.D Sample Name: C-57-2 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 8 Location : Vial 93 Injection Date : 6/23/2016 1:04:36 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\VWD-AD(1-6)-93-7-0.6ML-Acg. Method 3UL-220-60MIN.M Last changed : 6/23/2016 1:43:06 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\LXX\C-P-BR\C-57-AD 2016-06-23 08-57-35\VWD-AD(1-6)-93-7-0.6ML-3UL-220-60MIN.M (Sequence Method) Last changed : 6/23/2016 1:50:44 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LXXC-P-BR\C-57-AD 2016-06-23 08-57-35/093-0801.D) mAU 700 15 Street Jacks 600 · 500 · 400 · 300 200 1 64.05⁰⁴ 100 .732 5 0 20 24 26 30 min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [mAU*s] # [min] [min] [mAU] ÷ ----|-----|-----|------| 1 23.241 MM 0.5906 1.99431e4 562.81189 99.5304 2 31.732 MM 0.7049 94.09338 2.22470 0.4696 Totals : 2.00372e4 565.03659

1260HPLC-VWD 6/23/2016 1:52:05 PM SYSTEM

Data File E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\093-0201.D Sample Name: C-54-1-Rac

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 2 Location : Vial 93 Injection Date : 6/22/2016 9:55:11 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\VWD-AD(1-6)-95-5-1ML-3UL-Acq. Method 220-40MIN.M Last changed : 6/22/2016 9:12:42 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) : 6/22/2016 10:40:04 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated

 VWD1A, Wavelength=220 nm (E:\DATA\LX\\C-P-TBU\C-56 2016 06-22 09-12-42093 0201.D)
 mAU . 250 200 BBRA And Ballen 150 100 50 o 10 25 7.5 12.5 15 17.5 min Area Percent Report Sorted By Signal : Multiplier : 1.0000 Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Area Peak RetTime Type Width Height Area # [min] [min] [mAU*s] [mAU] * 1 11.105 MM 0.3374 2559.41797 126.42804 49.2161 2 12.699 MF 0.3778 2640.94482 116.50204 50.7839 Totals : 5200.36279 242.93008 *** End of Report ***

Data File E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\092-0101.D Sample Name: C-56 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 1 Location : Vial 92 Injection Date : 6/22/2016 9:14:27 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\VWD-AD(1-6)-95-5-1ML-3UL-Aca. Method 220-40MIN.M Last changed : 6/22/2016 9:12:42 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-TBU\C-56 2016-06-22 09-12-42\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) Last changed : 6/22/2016 10:04:26 AM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm(E\DATA\LX\\C-P-TBU\C-56 2016 06-22 09-12-42092-0101.D) mAU 1200 901, 1992, 11813.1 1000 800 600 400 151.55 200 8 0 2.5 17.5 10 12.5 15 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 11.045 MM 0.3443 1.76731e4 855.56940 97.4765 2 12.750 MM 0.3244 457.53632 23.50762 2.5235 Totals : 1.81307e4 879.07701 *** End of Report ***

1260HPLC-VWD 6/22/2016 10:04:32 AM SYSTEM

Data File E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\094-1301.D Sample Name: m-CH3-Rac

1260HPLC-VWD 7/1/2016 7:27:44 PM SYSTEM

Data File E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\097-1101.D Sample Name: C-69-3 ------Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 11 Location : Vial 97 Injection Date : 7/1/2016 4:18:33 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\VWD-AD(1-6)-94-6-0. Aca. Method 6ML3UL-220-60MIN.M Last changed : 7/1/2016 12:14:50 PM by SYSTEM Analysis Method : E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\VWD-AD(1-6)-94-6-0. 6ML3UL-220-60MIN.M (Sequence Method) Last changed : 7/1/2016 7:30:09 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm (E:\DATAYLXXWFY:2:P.CL\C:69 2016-07-01 09-09-56'097-1101.D) mAU 700 , SINA 600 -₩ \$ 500 -400 · 300 -200 -TITOS 100 512 0 24 16 18 20 <u>ź</u> min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] -- [min] [mAU*s] [mAŬ] % 1 18.444 MM 0.4971 1.57140e4 526.88458 99.5075 2 20.512 MM 0.3311 77.77057 3.91464 0.4925 1.57917e4 530.79923 Totals : *** End of Report ***

1260HPLC-VWD 7/1/2016 7:30:39 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\092-1601.D Sample Name: o-CH3-Rac

Acq. Operator : SYSTEM Seq. Line : 16 Acq. Instrument : 1260HPLC-VWD Location : Vial 92 Injection Date : 7/6/2016 4:40:23 PM Inj : 1 Inj Volume : 5.000 µl : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-97-3-0.5ML-5UL-Acq. Method 220NM-70MIN.M Last changed : 7/6/2016 5:49:03 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-97-3-0.5ML-5UL-220NM-70MIN.M (Sequence Method) Last changed : 7/6/2016 7:38:58 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated \[\VWD1A, Wavelength=220 nm (E:\DATALXXC-P.FVC-75 2016-07-06 08-29-26'092-1601.D) mAU 100 80 8 65.205 ä 60 40 20 0 57.5 62.5 72.5 75 min 55 67.5 70 60 65 Area Percent Report _____ Sorted By Signal Multiplier 1.0000 : Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [mAU] [mAU*s] * # [min] [min] 1 62.180 BV 1.7259 7588.88672 2 65.205 VB 1.8922 8045.31006 65.24884 48.5403 64.85965 51.4597 Totals : 1.56342e4 130.10849

1260HPLC-VWD 7/6/2016 7:39:02 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\094-1701.D Sample Name: C-75-4 ------Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seg. Line : 17 Location : Vial 94 Injection Date : 7/6/2016 6:01:09 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-97-3-0.5ML-5UL-Acg. Method 220NM-70MIN.M Last changed : 7/6/2016 5:49:03 PM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-F\C-75 2016-07-06 08-29-26\VWD-AD(1-6)-97-3-0.5ML-5UL-220NM-70MIN.M (Sequence Method) Last changed : 7/6/2016 7:37:28 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATANLXX\C-P-FVC-752016-07-0608-29-26\0941701.D) mAU 500 400 41.84 Black 300 200 100 81,0 8 0 75 45 50 бб 60 eσ 70 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 62.055 MM 0.4912 45.81175 1.55428 0.1165 2 65.115 FM 2.2110 3.92935e4 296.19366 99.8835 3.93393e4 297.74794 Totals : *** End of Report ***

1260HPLC-VWD 7/6/2016 7:37:31 PM SYSTEM

Data File E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\092-0401.D Sample Name: C-o-Br-Rac

Acq. Operator	: SYSTEM Seq. Line : 4
Acq. Instrument	: 1260HPLC-VWD Location : Vial 92
Injection Date	: 7/15/2016 1:16:52 PM Inj : 1
	Inj Volume : 3.000 µl
Acq. Method	: E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\VWD-AD(1-6)-95-
	5-0.8ML-3UL-220NM-35MIN.M
Last changed	: 7/15/2016 1:54:31 PM by SYSTEM
	(modified after loading)
Analysis Method	1 : E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\VWD-AD(1-6)-95-
	5-0.8ML-3UL-220NM-35MIN.M (Sequence Method)
Last changed	: 7/15/2016 2:38:59 PM by SYSTEM
-	(modified after loading)
Additional Info) : Peak(s) manually integrated
VWD1 A, W	/avelength=220 nm (E:\DATAWFY\WFY-AC4AD-0-F-95-5-0.5) 2016-07-15 11-31-57/092-0401.D)
mAU]	
350 -	
300-	
	. A
	йе B (Ме. R
250 -	State Stat
	ar ar
1	
200	
1	
150	
¹⁰⁰]	
1 1	
100-	
100 -	
100 -	
100	
100	
100 - 50 -	
100 -	
100 - 50 - 0 -	
100 - 50 -	22 24 26 28 30 min
100	22 24 28 28 30 min
100 -	
	Area Percent Report
	Area Percent Report
	Area Percent Report
100 - 50 - 0 -	Area Percent Report : Signal
100 - 60 - 0 -	Area Percent Report : Signal : 1.0000
100- 50- 0- Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000
100 50 0 Sorted By Multiplier Dilution Do not use Mult	Area Percent Report : Signal : 1.0000 : 1.0000 : piplier 4 Dilution Factor with ISTDs
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult	Area Percent Report : Signal : 1.0000 : 1.0000 : iplier & Dilution Factor with ISTDs
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult	Area Percent Report : Signal : 1.0000 : 1.0000 :iplier & Dilution Factor with ISTDs
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult	A Wave length=220 nm
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1	Area Percent Report : Signal : 1.0000 : 1.0000 :: Dilution Factor with ISTDs A, Wavelength=220 nm
100 50 0 Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak PetTime Tw	Area Percent Report : Signal : 1.0000 : 1.0000 :iplier & Dilution Factor with ISTDs A, Wavelength=220 nm me Width Area Height Area
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 : jplier & Dilution Factor with ISTDs A, Wavelength=220 nm pe Width Area Height Area [min] [mAUI*s] [mAUI] %
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 : Dilution Factor with ISTDs A, Wavelength=220 nm pe Width Area Height Area [min] [mAU*s] [mAU] %
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 0.000 : 1.0000 : 0.000 : 0.000 : 0.000
100- 50- 0 - Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : Dilution Factor with ISTDs A, Wavelength=220 nm pe Width Area Height Area [min] [mAU*s] [mAU] *
100 50 0 	Area Percent Report : 1 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 1.0000 : 0.0001 : 0.0000
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 : 10000 : 10000 : 10000 : 0.0000 : 10000 : 0.000 : 1.0000 : 0.000 : 0.0000 : 0.000 : 0.000 : 0.000 : 0
100- 50- 0- Sorted By Multiplier Dilution Do not use Mult Signal 1: VWD1 Peak RetTime Ty # [min] 	22 24 26 28 30 min Area Percent Report Area Percent Report I 1.0000 I 1.0000 I 1.0000 I 1.0000 I I.0000

1260HPLC-VWD 7/15/2016 2:39:05 PM SYSTEM

Data File E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\093-0501.D Sample Name: C-88-3 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : - 5 Location : Vial 93 Injection Date : 7/15/2016 1:55:15 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\VWD-AD(1-6)-95-Acg. Method 5-0.8ML-3UL-220NM-35MIN.M Last changed : 7/15/2016 2:04:36 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\WFY\WFY-AC4\AD-0-F-95-5-0.5) 2016-07-15 11-31-57\VWD-AD(1-6)-95-5-0.8ML-3UL-220NM-35MIN.M (Sequence Method) Last changed : 7/15/2016 2:42:09 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAWFYWFY:AC4AD-0.F.95 50.5) 2016-07-15 11-31-57/093.0501.D) mAU Street Halles 700 600 500 400 300 200 And CABIA 100 · ٥· <u>30 </u> 22 24 26 28 min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] [mAU*s] # [min] [mAU] ÷ ----|-----|-----|------| 1 24.357 MM 0.6774 2.58063e4 634.96436 99.0991 2 26.349 MM 0.5011 234.61411 7.80281 0.9009 Totals : 2.60409e4 642.76717

1260HPLC-VWD 7/15/2016 2:42:12 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\096-0901.D Sample Name: 2-NAI-Rac

Acq. Operator	SYSTEM Seq. Line : 9		
Acq. Instrument	1260HPLC-VWD Location: Vial 96		
injection Date	ין און און און און און און און און און או		
Aca. Method	E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\VWD-AD(1-6)-95-5-1ML-3UL-		
	220-40MIN.M		
Last changed	7/5/2016 7:49:31 AM by SYSTEM		
Analysis Method	E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\VWD-AD(1-6)-95-5-1ML-3UL- 220-40MIN.M (Sequence Method)		
Last changed	7/5/2016 2:46:13 PM by SYSTEM (modified after loading)		
Additional Info	Peak(s) manually integrated		
VWD1 A, Wav	length=220 nm (E:\DATA\LXX\C-P-F\C-73&74.2016-07-05.07-49-31\098-0901.D)		
mAU] 1600 -			
1400 -	o de		
1200 -			
	1 Sixer		
1000 -			
800-			
600-			
400-			
1			
200 -			
200			
200			
200 - 0			
	22 24 26 28 30 32 min		
	<u>22</u> <u>24</u> <u>26</u> <u>28</u> <u>30</u> <u>32</u> min Area Percent Report		
	22 24 28 28 30 32 min		
200	<u>22</u> <u>24</u> <u>26</u> <u>28</u> <u>30</u> <u>32</u> min Area Percent Report : Signal		
200 200 Sorted By Multiplier	<u>22</u> <u>24</u> <u>26</u> <u>28</u> <u>30</u> <u>32</u> min Area Percent Report : Signal : 1.0000		
200 200 20 Sorted By Multiplier Dilution	1 1 1 1 1 1 1 1 1 1 1 1 0000 1 1 0000 1 <t< td=""></t<>		
200 200 20 Sorted By Multiplier Dilution Do not use Multi;	22 24 28 30 32 min Area Percent Report : Signal : 1.0000 : 1.0000 lier & Dilution Factor with ISTDs		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier			
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signel 1: WEDLA	Area Percent Report : Signal : 1.0000 : 1.0000 lier & Dilution Factor with ISTDs		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A	Area Percent Report : Signal : 1.0000 : 1.0000 lier & Dilution Factor with ISTDs Wavelength=220 nm		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ	Area Percent Report : Signal : 1.0000 : 1.0000 lier & Dilution Factor with ISTDs Wavelength=220 nm Width Area Height Area		
200 200 20 Sorted By Multiplier Dilution Do not use Multi; Signal 1: VWD1 A Peak RetTime Typ # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 lier & Dilution Factor with ISTDs Wavelength=220 nm Width Area Height Area [min] [mAU*s] [mAU] *		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min]			
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min] 	22 24 26 28 30 32 min Area Percent Report		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min] 	22 24 26 28 30 32 min Area Percent Report . Signal . 1.0000 . 1.0000 . 1.0000 . 1.0000 . 1.0000 . 1.0000 . Wavelength=220 nm Width Area Height Area [min] [mAU*s] [mAU] % . 0.6965 4.96880e4 1189.06067 48.9760 0.8320 5.17657e4 1036.96191 51.0240		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min] 	22 24 26 28 30 32 min Area Percent Report . Signal 1.0000 1.0000 Lie A colspan="2">Colspan="2" Value Colspan="2" Value Colspan= 2 Value Colspan= 2 Value Colspan= 2 Value Colspan= 2 <td <="" colspan="2" td=""></td>		
200 200 20 Sorted By Multiplier Dilution Do not use Multi; Signal 1: VWD1 A Peak RetTime Typ # [min] 	22 24 28 30 32 min Area Percent Report . Signal 1.0000 1.0000 lier & Dilution Factor with ISTDs Wavelength=220 nm % Width Area Height Area [min] [mAU*s] [mAU] % ! ! !		
200 200 20 Sorted By Multiplier Dilution Do not use Multi; Signal 1: VWD1 A Peak RetTime Typ # [min] 1 24.155 MM 2 27.870 MM Totals :	22 24 28 30 32 min Area Percent Report		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min] 	Image: 22 24 28 30 32 min Area Percent Report Image: 28 30 32 min Image: Area Percent Report Image: 28 30 32 min Image: Area Percent Report Image: 28 30 32 min Image: Area Percent Report Image: 28 10000 10000 10000 Image: Image: Image: Image: Image: 10000 Image: 10000 10000 10000 10000 Image: I		
200 200 20 Sorted By Multiplier Dilution Do not use Multiplier Signal 1: VWD1 A Peak RetTime Typ # [min] 	22 24 28 30 32 min Area Percent Report		

1260HPLC-VWD 7/5/2016 2:46:20 PM SYSTEM

Data File E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\099-1301.D Sample Name: C-74-2

_____ Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 13 Location : Vial 99 Injection Date : 7/5/2016 3:58:00 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\VWD-AD(1-6)-95-5-1ML-3UL-Acg. Method 220-40MIN.M Last changed : 7/5/2016 7:49:31 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-P-F\C-73&74 2016-07-05 07-49-31\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) Last changed : 7/5/2016 4:43:51 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATAVLXX\C-P-FVC-73&742016-07-05-07-49-31\099-1301.D) mAU 1600 84.18 6 6 7 7 7 7 7 7 7 1400 1200 -1000 800 600 -400 Central Parts 200 0 30 min 26 Area Percent Report Sorted By Signal : al العمومي. 1.0000 ر Multiplier : 1.0000 Dilution Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|----|-----|-----|-----| 1 24.175 MM 0.7068 5.32133e4 1254.77527 99.4749 2 28.320 MM 0.6518 280.90329 7.18264 0.5251 Totals : 5.34942e4 1261.95791 *** End of Report ***

1260HPLC-VWD 7/5/2016 4:43:56 PM SYSTEM

Data File E:\DATA\LXX\C-1-NAI\C-59-1-AD 2016-06-25 11-04-16\092-0301.D Sample Name: C-59-1

Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 3 Location : Vial 92 Injection Date : 6/25/2016 11:36:36 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-1-NAI\C-59-1-AD 2016-06-25 11-04-16\VWD-AD(1-6)-95-5-1ML-Acq. Method 3UL-220-40MIN.M Last changed : 6/25/2016 11:04:17 AM by SYSTEM Analysis Method : E:\DATA\LXX\C-1-NAI\C-59-1-AD 2016-06-25 11-04-16\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) : 6/25/2016 12:21:03 PM by SYSTEM Last changed (modified after loading) Additional Info : Peak (s) manually integrated

 VWD1A, Wavelength=220 nm (E:\DATA\LX\C-1-NAI\C-59-1-AD 2016-06-25 11-04-16\092-0301.D)
 mAU 20 400 2000 D Orac Bares 1000 800 -600 · 400 200 0 -- -15 27.5 12.5 17.5 20 225 25 min Area Percent Report _____ Sorted By Signal : Multiplier : 1.0000 Dilution 1.0000 : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * 1 18.761 MM 0.5531 2.85465e4 860.14276 50.1468 2 21.028 MM 0.6000 2.83794e4 788.28717 49.8532 Totals : 5.69259e4 1648.42993 *** End of Report ***

1260HPLC-VWD 6/25/2016 12:21:07 PM SYSTEM

Data File E:\DATA\LXX\C-1-NAI\C-63 2016-06-26 11-23-47\092-0401.D Sample Name: C-63-1 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 4 Location : Vial 92 Injection Date : 6/26/2016 1:06:48 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\C-1-NAI\C-63 2016-06-26 11-23-47\VWD-AD(1-6)-95-5-1ML-3UL-Acg. Method 220-40MIN.M Last changed : 6/26/2016 1:45:49 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\LXX\C-1-NAI\C-63 2016-06-26 11-23-47\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) Last changed : 6/26/2016 1:55:44 PM by SYSTEM (modified after loading) Additional Info : Peak (s) manually integrated VWD1A, Wavelength=220 nm (E:DATAVLXXC-1-NAIXC-63 2016-06-26 11-23-47/092-0401.D) mALL 600 12900.0 500 989 989 982 400 -300 200 150^{1,0} 100 8 7.00 n <u>12.5</u> 27.5 <u>1</u>5 17.5 min _____ Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] * ----|-----|-----|-------------1 1 18.865 MM 0.5455 1.29586e4 395.89621 96.6070 2 21.260 MM 0.5098 455.12979 14.87798 3.3930 Totals : 1.34137e4 410.77419 *** End of Report ***

1260HPLC-VWD 6/26/2016 1:55:55 PM SYSTEM

Data File E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\093-2801.D Sample Name: Saifen-Rac

Data File E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\096-1601.D Sample Name: C-69-2 ------Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 16 Location : Vial 96 Injection Date : 7/1/2016 7:35:23 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\VWD-AD(1-6)-94-6-0. Acg. Method 6ML3UL-220-60MIN.M Last changed : 7/1/2016 7:36:30 PM by SYSTEM (modified after loading) Analysis Method : E:\DATA\LXX\WFY-2-P-CL\C-69 2016-07-01 09-09-55\VWD-AD(1-6)-94-6-0. 6ML3UL-220-60MIN.M (Sequence Method) Last changed : 7/2/2016 8:52:48 AM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated \VWD1A, Wavelength=220 nm (E:\DATALXXWFY-2-P-CL\C-69 2016-07-01 09-09-55'096-1601.D) mAU ¢ strat habet 400 300 200 100 10.00 M.S 88 <u>.</u> o 24 26 30 28 32 min Area Percent Report Sorted By Signal : 1.0000 Multiplier : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Height Area Area [min] [mAU*s] # [min] [mAU] * ----|-----|-----|------| 1 26.100 MM 0.6554 1.19052e4 302.75143 99.8607 2 27.826 MM 0.3748 16.60127 7.38190e-1 0.1393 Totals : 1.19218e4 303.48962

1260HPLC-VWD 7/2/2016 8:52:52 AM SYSTEM

Data File E:\DATA\LXX\345-0CH3\C-77 2016-07-08 19-50-01\095-0901.D Sample Name: Funan-Rac

*** End of Report ***

1260HPLC-VWD 7/9/2016 8:20:40 AM SYSTEM

Data File E:\DATA\LXX\345-0CH3\C-77 2016-07-08 19-50-01\096-1001.D Sample Name: C-77-3

_____ Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 10 Location : Vial 96 Injection Date : 7/9/2016 12:53:07 AM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\345-0CH3\C-77 2016-07-08 19-50-01\VWD-AD(1-6)-95-5-1ML-3UL-Acg. Method 220-40MIN.M Last changed : 7/8/2016 7:50:02 PM by SYSTEM Analysis Method : E:\DATA\LXX\345-0CH3\C-77 2016-07-08 19-50-01\VWD-AD(1-6)-95-5-1ML-3UL-220-40MIN.M (Sequence Method) Last changed : 7/9/2016 8:18:38 AM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A,Wavelength=220 nm(E:\DATAVLXX345-0CH3\C-77 2016-07-08 19-50-01\098-1001.D) mAU 1750 1500 1250 -1000 -750 500 14.9489 250 620 0 -28 18 20 16 min Area Percent Report Sorted By Signal : Multiplier : 1.0000 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] * # [min] ----|-----|----|-----|-----|-----| 1 19.822 MM 0.6077 6.11226e4 1676.25879 99.8775 2 24.079 MM 0.5243 74.94890 2.38232 0.1225 Totals : 6.11975e4 1678.64111 *** End of Report ***

1260HPLC-VWD 7/9/2016 8:18:57 AM SYSTEM

Data File E:\DATA\LXX\C-YIDING\C-90 2016-07-14 20-17-38\093-0501.D Sample Name: C-89-1

1260HPLC-DAD 7/15/2016 8:24:46 AM SYSTEM

Data File E:\DATA\LXX\C-YIDING\C-90 2016-07-14 20-17-38\095-0601.D Sample Name: C-90

1260HPLC-DAD 7/15/2016 8:27:06 AM SYSTEM

Data File E:\DATA\LXX\3-103-4\3-103-3 2016-09-18 10-00-11\093-0901.D Sample Name: C-102-1-Rac

1260HPLC-VWD 9/22/2016 7:55:06 PM SYSTEM

Data File E:\DATA\LXX\3-103-4\3-103-3 2016-09-18 10-00-11\094-0701.D Sample Name: C-102-2 -----Acq. Operator : SYSTEM Acq. Instrument : 1260HPLC-VWD Seq. Line : 7 Location : Vial 94 Injection Date : 9/18/2016 1:30:46 PM Inj: 1 Inj Volume : 3.000 µl : E:\DATA\LXX\3-103-4\3-103-3 2016-09-18 10-00-11\VWD-AD(1-6)-95-5-1ML-3UL Acg. Method -40MIN-220NM.M Last changed : 9/18/2016 10:00:11 AM by SYSTEM Analysis Method : E:\DATA\LXX\3-103-4\3-103-3 2016-09-18 10-00-11\VWD-AD(1-6)-95-5-1ML-3UL -40MIN-220NM.M (Sequence Method) Last changed : 9/22/2016 7:53:19 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated VWD1A, Wavelength=220 nm (E:\DATA\LXX\3-103-43-103-32016-09-18 10-00-111094-0701.D) mAU KIALOO 600 -^ă∕s[¢] 500 -400 · 300 -200 -ARTIN 100 ₽ R. 0 10 15 20 min Area Percent Report Sorted By Signal : Multiplier 1.0000 : 1.0000 Dilution : Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=220 nm Peak RetTime Type Width Area Height Area # [min] -- [min] [mAU*s] [mAŬ] % 1 18.484 MM 0.5561 1.74050e4 521.67749 99.9734 2 20.107 MM 0.2456 4.62717 3.13968e-1 0.0266 1.74096e4 521.99146 Totals : _____ *** End of Report ***

1260HPLC-VWD 9/22/2016 7:53:25 PM SYSTEM