Supplementary Information

Polypeptide Effect on Mg²⁺ Hydration Inferred from CaCO₃ Formation: A Biomineralization Study by Counter-Diffusion

Maria Sancho Tomás^a, Simona Fermani^b, Michela Reggi^b, Juan Manuel García Ruiz^c, Jaime Gómez Morales^{c*}, Giuseppe Falini^{b*}

^aSynchrotron Soleil, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette, France.
^bDipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum Università di Bologna, via Selmi 2, 40126 Bologna, Italy.
^cLaboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda Las Palmeras 4, 18100 Armilla, Spain

Figure SI1: Description of the CDS	pag. SI2
Figure SI2: FTIR patterns	pag. SI3
Figure SI3 XRD patterns	pag. SI4
Table SI1	pag. SI5

Figure SI1 (A) Camera picture of the U-tube set-up used for $CaCO_3$ crystallization experiments in CDS using agarose gels and viscous sols. (B) Schematic illustration of the measured crystallization parameters in the U-tube: x_o , the starting point of precipitation; Δ , the crystal growing space; x_{cat} and x_{an} , the boundaries of the crystal growing space close to the cationic and anionic reservoir, respectively; Δcat and Δan , the crystal growing space from the starting point xo to x_{cat} and x_{an} , respectively.

Figure SI2. FTIR spectra of CaCO₃ precipitated in agarose viscous sols entrapping pLys (blue), pGlu (green) or pAsp (red), and in additive-free experiments (black). Each set of spectra refers to experiments Mg2+-free (left-upper corner) or Mg^{2+}/Ca^{2+} molar ratios equal to 1 (right-upper corner), 3 (left-lower corner) or 5 (right-lower corner). The absorption intensities of the FTIR bands are reported in arbitrary units (a.u.). The salient features of infrared spectra of calcite are 1429, 877 and 713 cm⁻¹; and of aragonite, 1477, 1083, 858, 713 and 700 cm⁻¹. The peaks at 1477 and 1429 cm⁻¹ correspond to the v₃ absorption band of carbonate ions; the peaks at 877, 858 correspond to v₂ and 713 and 700 cm⁻¹ correspond to v₄ absorption bands of carbonate ions.

Figure SI3. X-ray powder diffraction patterns of the $CaCO_3$ precipitated in agarose viscous sols entrapping pLys (blue), pGlu (green) or pAsp (red), and in absence of additive (black). Each set of spectra refers to experiments carried out in Mg²⁺-free (left-upper corner) or Mg²⁺/Ca²⁺ equals to 1 (right-upper corner), 3 (left-lower corner) or 5 (right-lower corner). The main diffraction peaks for calcite, (012), (104), (110), (018) and (116), and aragonite (111), (021), (022) and (221), are indicated according to the reference patterns PDF-calcite 01-083-0587 and PDF-aragonite 01-077-0606. The diffractograms are shifted along the Y-axis that reports intensity in arbitrary units (a.u.).

Table SI1 Crystallization parameters measured in experiments of CaCO ₃ precipitation in CDS using charged
polypeptides entrapped in an agarose viscous sol and diffusing Mg ²⁺ . Measured parameters are x_o , Δ_{cat} , Δ_{an} ,
t _w and d _c . From up to down the lines correspond to Mg ²⁺ -free experiments (Mg0) in the cation reservoir and
Mg ²⁺ /Ca ²⁺ molar ratio equal to 1(Mg1), 3(Mg3) and 5(Mg5), respectively. Each experiment was repeated at
least 3 times and in parenthesis is reported the standard deviation.

		Δ_{cat}	xo	Δ_{an}	tw	d _c
Mg0	Ref.	0.10 (0.06)	0.66 (0.12)	0.16 (0.06)	~2	l, m
	pLys	0.11 (0.08)	0.68 (0.09)	0.18 (0.06)	~4	l, m, h
	pGlu	0.06 (0.07)	0.66 (0.08)	0.06 (0.05)	~2	m
	pAsp	0,02 (0.01)	0.64 (0.02)	0.03 (0.02)	~3	h
Mgl	Ref.	0.13 (0.05)	0.68 (0.04)	0.15 (0.04)	~4	1
	pLys	0.13 (0.07)	0.68 (0.12)	0.15 (0.05)	~3	l, h, m
	pGlu	0.07 (0.02)	0.65 (0.04)	0.11 (0.05)	~4	m
	pAsp	0.04 (0.02)	0.76 (0.02)	0.04 (0.03)	~4	h
Mg3	Ref.	0.19 (0.02)	0.60 (0.04)	0.12 (0.02)	2-3	1
	pLys	0.16 (0.07)	0.68 (0.10)	0.14 (0.09)	~5	I
	pGlu	0.09 (0.01)	0.74 (0.04)	0.09 (0.07)	~3	m
	pAsp	0.04 (0.08)	0.74 (0.08)	0.02 (0.09)	~6	m
Mg5	Ref.	0.16 (0.05)	0.42 (0.07)	0.12 (0.05)	~3	l
	pLys	0.14 (0.04)	0.70 (0.04)	0.11 (0.03)	~5	l
	pGlu	0.08 (0.04)	0.66 (0.03)	0.06 (0.05)	2-3	l, m
	pAsp	0.06 (0.14)	0.73 (0.14)	0.018	~8	1

The density of crystallization is indicated as low (I), medium (m) and high (h).