Electronic Supplementary Information

Temperature Dependent of Photoluminescence Studies in ZnO Microrods by FZ Method

Xingyuan Guo, ^a Carl P. Tripp, ^b Changfeng Chen, ^b Yan Wang, ^c Shengyan Yin, ^d Weiping Qin^{*d}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.

^bLaboratory for Surface Science and Technology and Department of Chemistry, University of Maine, Orono ME 04468, USA. ^cCollege of Chemistry, Jilin university, Changchun 130012, China.

^dState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China.

Figure S1: Photograph of a commercial optical floating zone furnace (image furnace): model FZ-T-10000-H-VI-VP, CSI Japan.

Figure S2: The growth morphology image of the ZnO microrods observed in the FZ furnace.

^{*} Corresponding author. Tel: 86-431-85153853; Fax: 86-431-85168241-8325. E-mail address: wpqin@jlu.edu.cn (WP. Qin).

Figure S3: Temperature profile for four mirror used in the FZ furnace around the horizontal plane. The similar temperature profile can be found from the website:

http://www.crystalsys.co.jp/english/product02_e.html or http://scidre.de/index.php?id=12.

Figure S4: Raman spectrum of the ZnO microrods at room temperature

As shown in S4, four peaks at 331, 383, 412 and 436 cm⁻¹ were observed. The peak at 436 cm⁻¹ is attributed to ZnO non-polar optical phonons of the E_2^{high} mode, the peak at 412 cm⁻¹, 383 cm⁻¹ and 331 cm⁻¹ corresponds to $E_1(TO)$, $A_1(TO)$ and $E_2^{high}-E_2^{low}$ symmetry, respectively.^[1-3] The peak at 589 cm⁻¹ is related to local vibrational modes associated with intrinsic lattice defects.^[3] This peak is weak in intensity which is consistent with the presence of low defect levels in the ZnO microrods.

Figure S5: (a) Room temperature PL spectra of as prepared ZnO microrods recorded at different excitation intensities from 1 kW/cm^2 to 100 kW/cm^2 . (b) Luminescence spectra as the as a function of excitation intensity is increased from power density.

S5(a) shows the evolution of the band edge at room temperature as the excitation intensity is increased from 1 kW/cm² to 100 kW/cm². At low excitation intensities (1 kW/cm²), a visible green fluorescence emission at 2.35 eV (527 nm) was observed due to the presence of ZnO defects.^[4, 5] As the excitation intensity reaches 2 kW/cm², a second peak emerges at 3.145 eV (394 nm) which is due to the recombination of the free excitons of ZnO. At excitation intensities above 100 kW/cm², the free excitons peak dominates at PL spectra, as shown in S 5(b).

S6 PL spectra at different temperatures

Reference

- 1. Arguello, C.A., D.L. Rousseau, and S.P.S. Porto, *First-Order Raman Effect in Wurtzite-Type Crystals*. Physical Review, 1969. **181**(3): p. 1351.
- Serrano, J., et al., *Pressure dependence of the lattice dynamics of ZnO: An ab initio approach*. Physical Review B, 2004. **69**(9): p. 094306.
- 3. Cusc, R., et al., *Temperature dependence of Raman scattering in ZnO*. Physical Review B, 2007. **75**(16): p. 165202.
- 4. Xu, X., et al., *Evolutions of defects and blue-green emissions in ZnO microwhiskers fabricated by vapor-phase transport.* Journal of Physics and Chemistry of Solids, 2012. **73**(7): p. 858-862.
- 5. Djurisic, A.B., et al., *Defect emissions in ZnO nanostructures*. Nanotechnology, 2007. **18**(9).