Supporting information

Water motion-controlled reversible phase transition and de/absorption-controlled reversible phase transformation in hydrate crystal (BEDABCO)ClO4·H2O and its analogs

Xiang-Bin Han,* Jing-Mei Xiao

College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, Jiangsu, China.

Contents:

Experimental section

Table S1 Crystal data of 1 - 4

Table S2 Hydrogen bond of crystal **3** and **4** at 293 K (Å, °).

Table S3 Atomic coordinates (10⁴) and equivalent isotropic displacement parameters

 $(A^{2} \cdot 10^{3})$ for O5 in crystal 1 at 343 K, 333 K and 293 K. U_{eq} is defined as one third of

the trace of the orthogonalized U_{ij} tensor.

Figure S1 IR spectra of (a) 1 and 2 and (b) 3 and 4.

Figure S2 Dielectric spectra of **2**(a), **3**(b), **4**(c).

Figure S3 Differential scanning calorimetry (DSC) of **3**(a), **4**(b).

Figure S4 Powder X-ray diffraction patterns of 2(a), 3(b), 4(c).

Figure S5 Cycle of dielectric spectra of 3(a), 4(b) at 1MHz upon the cooling.

Figure S6 Variable temperatures IR spectra of **1**(a), **3**(b), **4**(c) at 293 K, 313 K, 333 K, and 353K.

Experimental section

Materials and methods

All the analytical grade chemicals were used as received without further purification. Elemental analysis was performed on a vario MICRO analyzer. Infrared (IR) spectra were recorded on a Nicolet 5700 spectrometer. Thermogravimetric analysis (TGA) was carried out on a METTLER TOLEDO STARe System. Measurements of differential scanning calorimetry (DSC) were performed on a Perkin-Elmer Diamond DSC instrument from 130 to 293 K and the heating rate is 10 K/min at atmospheric pressure. Powder X-ray diffraction (PXRD) was measured on a Rigaku SmartLab X-ray diffraction instrument. Dielectric measurements were performed on a TongHui 2828 impedance Analyzer over the frequency range from 500 Hz to 1 MHz and the temperature range from 280to 360 K with an applied electric field of 1.0 V.

Synthesis of compounds 1-4

Compound 1-2

1,4-Diazabicyclo [2.2.2]octane (1.12 g, 10 mmol) and 1,2-dibromoethane (1.88 g, 10 mmol) were mixed in 20 ml of chloroform and refluxed at 343 K for 4 hours. then filter the solid in the solution and dissolve these solid into 20 ml water and add NaClO₄·H₂O (1.4046 g, 10 mmol) with stirring, after several days, colorless crystals **1** were obtained by slow evaporation the solvent with a yield of 74%.

Crystals of 2 were obtained via re-crystallizing compound 1 five times in D_2O .

Compound 3

1,4-Diazabicyclo [2.2.2]octane (1.12 g, 10 mmol) and 1-Bromo-2-chloroethane (1.43 g, 10 mmol) were mixed in 20 ml of chloroform and refluxed at 343 K for 4 hours. then filter the solid in the solution and dissolve these solid into 20 ml water and add NaClO₄·H₂O (1.4046 g, 10 mmol) with stirring, after several days, colorless crystals **3** were obtained by slow evaporation the solvent with a yield of 84%.

Compound 4

1,4-Diazabicyclo [2.2.2]octane (1.12 g, 10 mmol) and 1-Bromo-2-chloroethane (1.43 g, 10 mmol) were mixed in 20 ml of chloroform and refluxed at 343 K for 4 hours.

then filter the solid in the solution and dissolve these solid into 20 ml water and add $NaBF_4$ ·H₂O (1.10 g, 10 mmol) with stirring, after several days, colorless crystals 4 were obtained by slow evaporation the solvent with a yield of 68%.

Crystal structure measurement

Single-crystal data of 1 were collected at different temperatures on a Rigaku Saturn 724⁺ diffractometer equipped with a Rigaku low-temperature gas spray cooler device by using Mo-K α ($\lambda = 0.71075$ Å) radiation from a graphite monochromator. Data processing was performed using the CrystalClear software package (Rigaku, 2005). The structures were solved by direct methods and successive Fourier synthesis and then refined by full-matrix least-squares refinements on F^2 using the SHELXL-2014 software package. Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as a riding mode, with C-H = 0.96 Å (methylene) with $U_{iso}(H) = 1.2 U_{eq}(C)$. Summary of crystallographic data for the compounds are given in Table 1. CCDC 1473188-1473193 contain the supplementary crystallographic data for 1. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, from the Cambridge or Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

		1	
T/K	293(2)	333(2)	343(2)
Formula	$C_8H_{18}BrClN_2O_5$	$C_8H_{18}BrClN_2O_5$	$C_8H_{18}BrClN_2O_5$
Formula weight	337.59	337.59	337.59
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> / Å	10.980(2)	11.055(6)	11.067(2)
<i>b</i> / Å	10.333(2)	10.452(6)	10.483(2)
<i>c</i> / Å	11.370(2)	11.388(6)	11.404(2)
α / °	90	90	90
β /°	93.92(3)	94.249(9)	94.32(3)
γ /°	90	90	90

Table S1	Crystal	data	of	1
----------	---------	------	----	---

$V/\text{\AA}^3$	1287.0(5)	1312.3(12)	1319.3(5)
Ζ	4	4	4
$D_{\rm calc}$ / g·cm ⁻³	1.742	1.709	1.700
μ / mm ⁻¹	3.413	3.348	3.330
<i>F</i> (000)	688	688	688
θ range / °	3.180-27.469	2.685-27.556	3.146-27.474
Reflns collected	8773	14041	4766
Independent reflns (R_{int})	2954 (0.0424)	3029 (0.0597)	3022 (0.0669)
no. parameters	160	160	160
$R_1^{[a]}, wR_2^{[b]} [I \ge 2\sigma(I)]$	0.0427, 0.0921	0.0521, 0.0974	0.0576, 0.1074
R_1 , wR_2 [all data]	0.0558, 0.098	0.0800, 0.1070	0.1310, 0.1336
GOF	1.088	1.110	0.972
$\Delta ho^{[c]}$ / e·Å ⁻³	0.403, -0.704	0.475, -0.524	0.347, -0.422
		$1 - \frac{1}{2} + $	

^[a] $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$. ^[b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. ^[c] Maximum and minimum residual electron density.

Table S1 Crystal data of 2-4

	2	3	4	
<i>T</i> / K	293(2)	293(2)	293(2)	
Formula	C ₈ H ₁₆ BrClD ₂ N ₂ O ₅	$C_8H_{18}Cl_2N_2O_5$	C ₈ H ₁₈ BBrF ₄ N ₂ O	
Formula weight	339.60	293.14	324.95	
Crystal system	monoclinic	monoclinic	monoclinic	
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$	
<i>a</i> / Å	11.018(2)	10.919(2)	10.886(2)	
<i>b</i> / Å	10.388(2)	10.331(2)	10.237(2)	
<i>c</i> / Å	11.406(2)	11.330(2)	11.376(2)	
lpha / °	90	90	90	
eta /°	94.03(3)	94.06(3)	94.16(3)	
γ /°	90	90	90	
$V/ \text{\AA}^3$	1302.2(5)	1274.9(4)	1264.4(4)	
Ζ	4	4	4	
$D_{ m calc}$ / g·cm ⁻³	1.732	1.527	1.707	
μ / mm ⁻¹	3.373	0.521	3.286	
<i>F</i> (000)	688	616	585	
θ range / °	3.165-27.482	3.187-27.482	3.196-27.484	
Reflns collected	13080	8606	8495	
Independent reflns (R_{int})	2988 (0.0766)	2932 (0.0300)	2898 (0.0802)	
no. parameters	160	161	160	
$R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$	0.0460, 0.1014	0.0436, 0.1037	0.0649, 0.1464	
R_1 , wR_2 [all data]	0.0634, 0.1094	0.0569, 0.1105	0.0984, 0.1692	
GOF	1.045	1.055	0.967	
$\Delta ho^{[c]} / e \cdot Å^{-3}$	0.489, -0.554	0.467, -0.321	0.709, -1.010	
^[a] $R_1 = \Sigma F_0 - F_c / \Sigma F_0 $. ^[b] $wR_2 = [\Sigma w (F_0^2 - F_c^2)^2 / \Sigma w (F_0^2)^2]^{1/2}$. ^[c] Maximum and				

minimum residual electron density.

rubie 52 Hydrogen bond of erystar b and 1 at 255 K (H,).					
D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
3					
O(5)-H(5WA)N(2)	0.833(17)	2.13(2)	2.930(3)	160(3)	
O(5)-H(5WB)O(2)#1	0.846(17)	2.21(2)	3.017(3)	161(3)	
4					
O(1)-H(1WA)N(2)	0.840(19)	2.14(4)	2.920(6)	154(7)	
O(1)-H(1WB)F(2)#1	0.86(2)	2.12(3)	2.950(6)	164(6)	
0 / 1 //1	1/2				

Table S2 Hydrogen bond of crystal **3** and **4** at 293 K (Å, °).

Symmetry code: #1 x, -y+3/2, z-1/2.

Table S3 Atomic coordinates (10⁴) and equivalent isotropic displacement parameters ($A^2 \cdot 10^3$) for O5 in crystal 1 at 343 K, 333 K and 293 K. U_{eq} is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	nine genanzea e ij			
ATOM	Х	Y	Ζ	U_{eq}
343 K				
O(5)	4821(5)	8147(7)	457(5)	99(2)
333 K				
O(5)	4812(3)	8166(4)	473(4)	89(1)
293 K				
O(5)	4817(3)	8189(3)	476(3)	74(1)

Figure S1 IR spectra of (a) 1 and 2 and (b) 3 and 4.

Figure S2 Dielectric spectra of 2(a), 3(b), 4(c).

Figure S3 Differential scanning calorimetry (DSC) of 3(a), 4(b).

Figure S4 Powder X-ray diffraction patterns of 2(a), 3(b), 4(c).

Figure S5 Cycle of dielectric spectra of 3(a), 4(b) at 1MHz upon the cooling.

Figure S6 Variable temperatures IR spectra of **1**(a), **3**(b), **4**(c) at 293 K, 313 K, 333 K, and 353 K, 353 K-2 was in-situ temperature data that measured after 5 minutes.