## **Electronic Supplementary Information**

## Ionic Liquid-Assisted Solvothermal Synthesis of Three-Dimensional Hierarchical Copper Sulfide Microflowers at Low Temperature with Enhanced Photocatalytic Performance

## Yingxue Cui,<sup>a</sup> Caiying Wei,<sup>a</sup> Jiaqin Yang,<sup>a</sup> Jing Zhang<sup>a</sup> and Wenjun Zheng<sup>\*ab</sup>

<sup>a</sup>Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

E-mail: zhwj@nankai.edu.cn

<sup>b</sup>Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071,

P. R. China.



Fig. S1 Structural view of (a) [BMIm]Cl and (b) [OMIm]Cl.



**Fig. S2** High-magnification FE-SEM image of 3D hierarchical CuS microflowers (S-4) obtained in [BMIm]Cl-MeOH mixed solvent with 4.58 M [BMIm]Cl at 65 °C for 20 min.



**Fig. S3** FE-SEM images of the samples obtained at different reaction durations in [BMIm]Cl-MeOH mixed solvent with 4.58 M [BMIm]Cl at 65 °C: (a) 1 min, (b) 3 min, and (c) 10 min.



**Fig. S4** (a) EDS and (b-c) typical XPS spectra of the sample obtained in [BMIm]Cl-MeOH mixed solvent with 4.58 M [BMIm]Cl at 65 °C for 10 min: (b) survey spectra (c) Cu<sub>2p</sub> region, and (d) S<sub>2p</sub> region.

| <b>Table S1</b> The atomic ratios of Cu and S elements from the EDS and XPS spec |
|----------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------|

|        | EDS   | XPS   |
|--------|-------|-------|
| Cu At% | 49.05 | 48.98 |
| S At%  | 50.95 | 51.02 |



**Fig. S5** XRD patterns of samples obtained in different molar concentration of [BMIm]Cl at 65 °C for 20 min: (a) S-0, (b) S-1, (c) S-2, and (d) S-3.



**Fig. S6** (a) XRD and (b) FE-SEM image of compact flower-like CuS superstructures obtained in [OMIm]Cl-MeOH mixed solvent with 4.58 M [OMIm]Cl at 65 °C for 20 min.



**Fig. S7** Time-dependent UV-Vis absorption spectra applying 3D hierarchical CuS microflowers (S-4) obtained in [BMIm]Cl-MeOH mixed solvent with 4.58 M [BMIm]Cl at 65 °C for 20 min as photocatalyst.



**Fig. S8** Visible-light irradiation photocatalytic degradation curves for MB (10 ppm) in the first three cycles applying 3D hierarchical CuS microflowers (S-4) obtained in [BMIm]Cl-MeOH mixed solvent with 4.58 M [BMIm]Cl at 65 °C for 20 min as photocatalyst.

| materials                                          | catalysts<br>(mg) | MB<br>concentration<br>(ppm) | MB<br>volume<br>(mL) | time<br>(min) | photodegradation degree ( $\xi$ , %) | reference    |
|----------------------------------------------------|-------------------|------------------------------|----------------------|---------------|--------------------------------------|--------------|
| 3D hierarchical CuS<br>microflowers                | 20                | 10                           | 100                  | 25            | 99                                   | this<br>work |
| CuS hierarchical structures                        | 30                | 20                           | 40                   | 90            | 87                                   | <b>S</b> 1   |
| CuS plates                                         | 10                | 3                            | 30                   | 30            | 80                                   | S2           |
| CuS nanoparticles                                  | 20                | 0.16                         | 50                   | 90            | 94                                   | S3           |
| hollow CuS microspheres                            | 20                | 11.3                         | 106                  | 48            | 74                                   | S4           |
| CuS microflowers                                   | 5                 | 10                           | 30                   | 25            | 98                                   | S5           |
| CdS hollow nanospheres                             | 50                | 14                           | 50                   | 60            | 87                                   | S6           |
| Fe <sub>2</sub> O <sub>3</sub> /ZnO hollow spheres | 50                | 5                            | 100                  | 50            | 95.2                                 | <b>S</b> 7   |

Table S2 Comparison of photocatalytic activity of different materials for degradation of MB.

Table S3 The total organic carbon (TOC) results of MB.

| Irradiation Time             | TOC concentration (mg L <sup>-1</sup> ) |
|------------------------------|-----------------------------------------|
| Before degradation (-60 min) | 8.2570                                  |
| After degradation (25 min)   | 0.4885                                  |

## **Supplementary references**

- S1 F. Li, J. Wu, Q. Qin, Z. Li and X. Huang, *Powder Technol.*, 2010, **198**, 267.
- M. Basu, A. K. Sinha, M. Pradhan, S. Sarkar, Y. N. Govind and T. Pal, *Environ. Sci. Technol.*, 2010, 44, 6313.
- S3 A. K. Sahoo and S. K. Srivastava, J. Nanopart. Res., 2013, 15, 1.
- S4 M. Tanveer, C. Cao, Z. Ali, I. Aslam, F. Idrees, W. S. Khan, F. K. But, M. Tahir and N. Mahmood, *CrystEngComm*, 2014, **16**, 5290.
- S5 Z. K. Yang, L. X. Song, Y. Teng and J. Xia, J. Mater. Chem. A, 2014, 2, 20004.
- S6 G. Lin, J. Zheng and R. Xu, J. Phys. Chem. C, 2008, 112, 7363.
- S7 Y. Liu, L. Yu, Y. Hu, C. Guo, F. Zhang and X. W. (David) Lou, *Nanoscale*, 2012, 4, 183.