Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2016

A new preparation strategy via in-situ catalytic process: CeO₂@Ag/Ag₂Ta₄O₁₁ catalyst

toward 4-nitrophenol reduction

Yuhang Wu, Congyan Li, Kaiwen Zhou, Yanhong Zhao, Xiaojing Wang*

School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia,

010021, P. R. China

Corresponding Author. Tel: 0471-4994406; Fax: 0471-4992981;

E-mail: wang xiao jing@hotmail.com

IS: Fig. S1

Figure S1 The energy-dispersive X-ray spectrum and map scanning of 0.2CeO₂@Ag₂Ta₄O₁₁ nanocomposite.

Fig. S2 UV–Vis diffuse reflectance spectra of CeO₂@Ag₂Ta₄O₁₁ with different molar ratio: (a) 0.1CeO₂@Ag₂Ta₄O₁₁, (b) 0.2CeO₂@Ag₂Ta₄O₁₁, (c) 0.3CeO₂@Ag₂Ta₄O₁₁

IS: Fig. S3

Fig. S3 UV-vis absorption spectra for the catalytic reduction of 4-NP without catalyst

Fig. S4 The colour of the catalysts before and after the reduced reaction

Numb er	Catalysts	k _{app} (×10 ⁻²) min ⁻¹	Activity factor (k/min ⁻¹ ·mg ⁻¹ of active metal)	Literature
1	$0.1 CeO_2 @Ag_2 Ta_4O_{11}$	64.996	129.99	This work
2	$0.2 CeO_2 @Ag_2 Ta_4O_{11}$	143.768	287.54	This work
3	$0.3 CeO_2 @Ag_2 Ta_4O_{11}$	306.866	613.73	This work
4	Ag NPs@PGMA-SH composite	23.64±1.98	47.28±3.96	1
5	graphene oxide/Ag NPs-Fe ₃ O ₄	160.2	320.4	2
6	Ag/SiO ₂ 1.08	16.38	32.76	3
7	Ag NPs on nanostructured silica	6.48	12.96	4
8	Ag NPs on Fe ₃ O ₄ @C nanocomposites	102	204	5
9	micron-SiO ₂ @Ag NPs	21.36	42.72	6
10	Ag/TiO ₂ nanoparticles	194.85	389.7	7

Table. S1 Reaction rate constant of $CeO_2@Ag_2Ta_4O_{11}$ nanoparticles together with several catalysts reported in literatures

Fig. S5 profile of conversion efficiency vs time during the catalytic reduction of (A) 4-chloronitrobenzene, (B) 4-nitrobenzoic acid, (C) p-nitrotoluene, (D) nitrobenzene and (E) 4-nitrophenol over 0.2CeO₂@Ag₂Ta₄O₁₁ in a reactive time of 3 min.

[1] W. C. Zhang, Y. Sun, L. Zhang, In Situ Synthesis of Monodisperse Silver Nanoparticles on SulfhydrylFunctionalized Poly(glycidyl methacrylate) Microspheres for Catalytic Reduction of 4-Nitrophenol [J], Industrial & Engineering Chemistry Research 2015, 54, 6480–6488.

[2] J. C. Qu, C. L. Ren, Y. L. Dong, Y. P. Chang, M. Zhou, X. G. Chen, Facile Synthesis of Multifunctional Graphene Oxide/AgNPs-Fe3O4 Nanocomposite: A Highly Integrated Catalysts. [J], Chemical Engineering Journal 2012, 412,211–212.
[3] M. Horecha, E. Kaul, A. Horechyy, M. Stamm, Polymer Microcapsules Loaded with Ag Nanocatalyst as Active Microreactors [J], Journal of Materials Chemistry A 2014, 2, 7431.

[4] S. K. Das, M. M. R. Khan, A. K. Guha, N. Naskar, Bio-Inspired Fabrication of Silver Nanoparticles on Nanostructured Silica: Characterization and Application as a Highly Efficient Hydrogenation Catalyst [J], Green Chemistry 2013, 15, 2548.
[5] M. Zhu, C. Wang, D. Meng, G. Diao, In Situ Synthesis of Silver Nanostructures on Magnetic Fe3O4@C Core-Shell Nanocomposites and Their Application in Catalytic Reduction Reactions[J], Journal of Materials Chemistry A 2013, 1, 2118.
[6] M. Wang, D. Tian, P. Tian, L. Yuan, Synthesis of MicronSiO2@Nano-Ag Particles and Their Catalytic Performance in 4- Nitrophenol Reduction [J], Applied Surface Science 2013, 283, 389.

[7] S.P. Deshmukh, R.K. Dhokale, H.M. Yadav, S.N. Achary, S.D. Delekar, Titania-supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol [J], Applied Surface Science 2013, 273, 676-683.