Electronic Supplementary Information (ESI)

High-quality spinel LiCoTiO₄ single crystals co-exposed {111} and {110} facets: flux growth, formation meachnism, magnetic behavior and their application in photocatalysis

Qiang Wang, Qingjun Guo, Yuanhao Hu, Bing Li*

School of Mechanical and Power Engineering, East China University of Science and Technology,130 Meilong Road, Shanghai 200237, P. R. China.

*E-mail: bingli@ecust.edu.cn.

Experimental section

Preparation of LiCoTiO₄/g-C₃N₄ composite photocatalysts

Melamine (analytical grade purity) was purchased from Sinopharm Chemical Reagent Co., Ltd. and used without further purification. Deionized water was used throughout.

In a typical synthesis run, different amounts of the flux-grown LiCoTiO₄ powder (LCTO-1 sample) with a suitable amount of melamine were dispersed in 100 ml water by ultrasonication for 30 min and then the suspension was continuously stirred for 6 h at room temperature. After that, the precipitate was collected by centrifugation and dried at 80 °C in an oven for 12 h. Finally, the obtained mixture was putted into an electric furnace and then calcined at 550 °C for 4 h in air to obtain g-C₃N₄ phase and make a firm connection between LiCoTiO₄ and g-C₃N₄ products. The as-prepared LiCoTiO₄/g-C₃N₄ composite samples with expected LiCoTiO₄ contents of 0.1, 0.5, 1.0 and 5.0 wt % were labeled as LCTO/CN-0.1, LCTO/CN-0.5, LCTO/CN-1.0 and LCTO/CN-5.0, respectively. As a reference, pure g-C₃N₄ was prepared by directly heating melamine at 550 °C for 4 h at a heating rate of 2 °C/ min in a semi-closed alumina crucible. After heating treatment, the yellow products were collected and ground into powders.

hkl	interplanar spacings $(d/ \text{ Å})^{\alpha}$			
	LiCoTiO ₄	Sample	Sample	Sample
	PDF No. 38-0182	LCTO-1	LCTO-2	LCTO-3
111	4.8800	4.8497	4.8596	4.8398
220	2.9780	2.9725	2.9747	2.9656
311	2.5370	2.5341	2.5352	2.5284
222	2.4320	2.4301	2.4307	2.4235
400	2.1050	2.1017	2.1021	2.0972
422	1.7180	1.7139	1.7167	1.7126
511	1.6189	1.6169	1.6180	1.6143
440	1.4868	1.4856	1.4865	1.4831
620	1.3303	1.3288	1.3297	1.3274
533	1.2834	1.2815	1.2821	1.2796
444	1.2144	1.2119	1.2138	1.2103

Table S1 Comparative study of the diffraction data for the synthesized LiCoTiO₄ samples.

^{α}Note: determined from the strong and medium lines of XRD patterns.

Fig. S1 EDS spectra of as-synthesized sample LCTO-1 and the light Li element can't be detected.

Fig. S2 SEM images of the as-synthesized sample LCTO-1.

Fig. S3 SEM images of the as-synthesized sample LCTO-2 (a) and LCTO-3 (b).

Fig. S4 XRD patterns of pure $g-C_3N_4$ (a), LCTO/CN-0.1 (b), LCTO/CN-0.5 (c), LCTO/CN-1.0 (d) and LCTO/CN-5.0 (e).

Fig. S5 SEM images of pure $g-C_3N_4$ (a, b) and the LCTO/CN-0.5 composite sample (c, d).

Fig. S6 TEM images of the LCTO/CN-0.5 composite sample.

Fig. S7 UV-vis diffuse reflectance spectra of the $LiCoTiO_4/g-C_3N_4$ composites and pure $g-C_3N_4$. Inset shows the photographs of stable dispersions in water of the samples.

Fig. S8 Photoluminescence (PL) emission spectra of the pure $g-C_3N_4$ and LCTO/CN-0.5 sample.