Supporting Information

Metal-responsive activation of C-O and C-C bonds of an aromatic vicinal diol in hydrothermal conditions: synthesis, structure, mechanism and magnetic properties

Sisi Feng^{a,b} \cdot Jianfeng Zheng^a \cdot Liping Lu^{a*} \cdot Haigang Lu^{a*} \cdot Zengqiang Gao^c \cdot Yuhui Dong^c

^{*a*} Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China. E-mail: luliping@sxu.edu.cn; luhg@sxu.edu.cn.

^b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.

^c Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Crystallography
 Supporting Tables and Figures
 References

1. Crystallography

Mo-*K* α radiation ($\lambda = 0.71073$ Å)

The data of the complexes 1 and 6 were collected on a Bruker Smart Apex II diffractometer equipped with 1 K CCD instrument by using a graphite monochromator utilizing Mo- $K\alpha$ radiation at room temperature.

Single-crystal X-ray diffraction data collection of complexes **2** and **4** were performed on an Oxford Supernova diffractometer at 123(2) K with graphite-monochromated Mo- $K\alpha$ radiation using the ω -scan technique.

The structures of **1**, **2**, **4** and **6** were solved by direct methods with the program package^{1, 2}, and absorption corrections were made via SADABS. Cell parameters were determined using SMART software.

```
Synchrotron radiation (\lambda = 0.72000 Å)
```

Single-crystal X-ray diffraction data for complexes **3** and **7** were collected in Beijing Synchrotron Radiation Facility (BSRF) beamline 3W1A which mounted with a MARCCD-165 detector with storage ring working at 2.5 GeV. In the process, the crystals were protected by liquid nitrogen at 100(2) K. Data were collected by the program marccd and processed using HKL2000³⁻⁵. For the synchrotron data, DISP instructions were used for the absorption coefficient of each element.

All data reduction and corrections were performed using SAINTPlus. Structures were solved by direct methods with the program SHELXS-97 and refined by full-matrix least-squares methods on all F^2 data with SHELXL-2014. Non-H atoms were refined anisotropically. H atoms attached to C and N atoms of all complexes were placed in geometrically idealized positions, with $Csp^2-H = 0.93$, and $Nsp^3-H = 0.86$ Å and refined with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$. H atoms attached to O were located from difference Fourier maps and refined as riding in their as-found positions with $U_{iso}(H) = 1.5U_{eq}(O)$ for 100% occupancy and $U_{iso}(H) = 1.0U_{eq}(O)$ for partial occupancy. The final cycle of full-matrix least-squares refinement was based on observed reflections and variable parameters. Crystallographic data of complexes are shown in Table S1. The CIF files deposited in the Cambridge Crystallographic Data Center (CCDC reference numbers 1016036-1016041) of can be obtained free charge via www.ccdc.cam.ac.uk/conts/retrieving.html; or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, U.K. [fax: (t44)-1223/336-033; email: deposit@ccdc.cam.ac.uk].

The complexes characterized by $[M_5L_6]^{4+}$ cluster (1-4) almost feature large voids, which may derive from two aspects. The one is from the triple-helix cavity buried in the cluster, which is about a void of 54 Å³ in each cluster. That is about 200-400 Å³ void in each cell, based on the Z value. Combined with our studies^{6, 7}, we speculate that these voids are inherent and there is a indeed cavity without any content in it for each molecule. The other is from disordered anions and solvent molecules. So the data were corrected for disordered electron density through use of the SQUEEZE⁸ procedure in PLATON. To verify the possible electron contents of the large voids, the methods of EA, ICP and TGA were used. Comments about each complex were added seriatim.

In 1, RIGU instruction was employed to have ellipsoids of sites (N16, C13, C27, C38, C44, C54, C56, C61 and C87) been restraint to more appropriate values. The formula in the left column of checkcif was C₉₆H₆₆Co₅N₂₄O₆, which represented $[Co_5(H_2L)_6]^{4+}$, and did not contain the contribution of the anions and solvent molecule. Further, the checkcif report indicated that structure contains very large solvent accessible voids. Data were corrected for disordered electron density through use of the PLATON SQUEEZE procedure, and the major platon squeeze void volume was 2240 Å³ and electrons of 548. According to EA and TGA results, each asymmetric unit contains one and a half nitrate, two and a half hydroxy and one and a half water molecules as the counter ions and solvents of crystallization (Fig. S7). They contain 84 electrons. Z value is equal to 4, so there are 336 electrons in this void. The other electrons of 212 are corresponding to about 5.3 water molecules in each asymmetric unit, but without any experimental evidence. They might be lost before performing the EA and TGA experiments or there might be an indeed cavity without any content existing, such as the triple-helix cavity buried in the M5O6 cluster. The details were inserted in platon squeeze details text of the CIF. These results matched with the formula C₉₆H_{71.5}Co₅N_{25.5}O_{14.5}, corresponding to [Co₅(H₂L)₆]·(NO₃)_{1.5}·(OH)_{2.5}·1.5H₂O.

In **2**, ISOR and RIGU instructions were employed to have ellipsoids of sites (C67, C87, C99, Br6 and Br8) and (N25, N26, C13, C69, C97, C98, C100, C102, O7, O8,) respectively been restraint to more appropriate values. Four reflections with (Iobs-Icalc)/SigmaW > 10 Outliers were omitted. The C-N and C-O distances of two DMF solvent molecules were restrained to reasonable ranges. 68 restraints were used for refinement anisotropically. The formula in the left column of checkcif was $C_{102}H_{80}Br_4Co_5N_{26}O_8$, which represented $[Co_5(H_2L)_6] \cdot 2(C_3H_7NO) \cdot Br_4$, and did not contain the contribution of the disordered solvent molecule. Further, the checkcif report indicated that structure contains very large solvent accessible voids. Data were corrected for disordered electron density through use of the SQUEEZE option in PLATON, and the two _platon_squeeze_void_volume add up to 9206 Å³ and electrons of 3444. According to EA and TGA results, each asymmetric unit contains three and a

half water molecules as solvents of crystallization (Fig. S8). They contain 35 electrons. Z value is equal to 8, so there are 280 electrons in this void. The other electrons of 3164 can't be identified because of the lack of experimental evidence. Attempts to refine peaks of residual electron density as solvent molecules were unsuccessful. They might be some other solvent molecules like DMF and water molecules lost before performing the EA and TGA experiments or there might be indeed not any content existing. The details were inserted in _platon_squeeze_details text of the CIF. These results matched with the formula $C_{102}H_{87}Br_4Co_5N_{26}O_{11.5}$, corresponding to $[Co_5(H_2L)_6] \cdot 2(C_3H_7NO) \cdot Br_4 \cdot 3.5H_2O$.

Compared to the other complexes of $[Co_5L_6]^{4+}$ or $[Ni_5L_6]^{4+}$ systems, the complex **2** seemed to have the largest voids. It may because that the crystal was obtained from the recrystallization in DMF, and the space group of crystallography was changed. It belonged to C2/c space group, but all other similar $[Co_5L_6]^{4+}$ or $[Ni_5L_6]^{4+}$ systems belonged to $P2_1/c$ (or $P2_1/n$). It had about twice the cell content as **1** or **3**, and its cell volume was about three times larger. Thus, the largest cell voids existed in complex **2** for all the $[M_5L_6]^{4+}$ systems.

In **3**, ISOR instruction was employed to have ellipsoids of sites (N21, N22, N24, C12, C22, C28, C29, C44-C48, C51-C54, C63, C67-C72, C79, C82-C89 and C95) been restraint to more appropriate values. 198 restraints were used for refinement anisotropically.

The formula in the left column of checkcif was $C_{96}H_{66}Co_5N_{24}O_6$, which represented $[Co_5(H_2L)_6]^{4+}$, and did not contain the contribution of the anions and solvent molecule. Further, the checkcif report indicated that structure contains very large solvent accessible voids. Data were corrected for disordered electron density through use of the *PLATON* SQUEEZE procedure, and the major _platon_squeeze_void_volume was 2142 Å³ and electrons of 563. According to EA and TGA results, each asymmetric unit contains one chloridion, two hydroxyl, one formate and two water molecules as the counter ions and solvents of crystallization (Fig. S9). They contain 78 electrons. Z value is equal to 4, so there are 312 electrons in this void. The other electrons of 251 are corresponding to about 6.3 water molecules in each asymmetric unit, but without any

experimental evidence. They might be lost before performing the EA and TGA experiments or there might be indeed not any content existing. The details were inserted in _platon_squeeze_details text of the CIF. These results matched with the formula $C_{97}H_{73}N_{24}Co_5O_{12}Cl$, corresponding to $[Co_5(H_2L)_6]Cl \cdot (OH)_2 \cdot (HCOO) \cdot 2H_2O$.

In 4, ISOR and RIGU instructions were employed to have ellipsoids of sites (C8, C15, C22, C27, C33, C35, C47, C60, C62, C63, C64, C77, C93, C94, C95, C11, C12, Cl3 and Cl4) and (C37, C38 and C39) respectively been restraint to more appropriate values. 123 restraints were used for refinement anisotropically. The formula in the left column of checkcif was C₉₆H₆₆Cl₄Fe₂N₂₄O₆Zn₃, which represented [Fe₂Zn₃(H₂L)₆]Cl₄, and did not contain the contribution of the disordered solvent molecule. Further, the checkcif report indicated that structure contains large solvent accessible voids. Data were corrected for disordered electron density through use of the SQUEEZE procedure in PLATON, and the two major _platon_squeeze_void volume add up to 1374 ${\rm \AA}^3$ and electrons of 522. According to EA and TGA results, each asymmetric unit contains three water molecules as solvents of crystallization (Fig. S10). They contain 30 electrons. Z value is equal to 4, so there are 120 electrons in this void. The other electrons of 402 are corresponding to about 10 water molecules in each asymmetric unit, but without any experimental evidence. They might be lost before performing the EA, ICP and TGA experiments or there might be indeed not any content existing. The details were inserted in platon squeeze details text of the CIF. These results matched with the formula $C_{96}H_{72}Cl_4Fe_{1,15}N_{24}O_9Zn_{3,85}$ corresponding to $[Fe_{1,15}Zn_{3,85}(H_2L)_6]Cl_4 \cdot 3H_2O.$

In **6**, DELU and ISOR instructions were employed to have ellipsoids of sites (C10, C11, C20, C29, C30-C37, N4, N8-N10) and (C12, C18, C19, C26, C27, Br3 and Br4) been restraint to more appropriate values. 56 restraints were used for refinement anisotropically. The formula in the left column of checkcif was $C_{37}H_{35}Br_4ClCuN_{10}$, which represented [($C_7H_6N_2$)_4Cu^{II}Br]($C_9H_{11}N_2$)·Cl·3Br, and did not contain the contribution of the disordered solvent molecule. Further, the checkcif report indicated that structure contains large solvent accessible voids. Data were corrected for disordered electron density through use of the SQUEEZE procedure in PLATON, and

the _platon_squeeze_void_volume was 638 Å³ and electrons of 247. According to EA result and the pH value of the mother solution between 1 and 2, each asymmetric unit contains two hydrated cations. They contain 22 electrons. Z value is equal to 2, so there are 44 electrons in this void. The other electrons of 203 are corresponding to about 10 water molecules in each asymmetric unit, but without any experimental evidence. They might be lost before performing the EA experiment or there might be indeed not any content existing. The details were inserted in _platon_squeeze_details text of the CIF. These results matched with the formula $C_{37}H_{41}Br_4ClCuN_{10}O_2$, corresponding to $[(C_7H_6N_2)_4Cu^{II}Br] \cdot 2H_3O \cdot (C_9H_{11}N_2) \cdot Cl \cdot 3Br.$

In 7, ISOR instruction was employed to have ellipsoids of site O2 been restraint to more appropriate value. Two reflections with (Iobs-Icalc)/SigmaW > 10 Outliers were omitted. There were disorder and partially occupied sites O2 and O3 in the counterion of NO₃⁻. 6 restraints were used for refinement anisotropically. The formula in the left column of checkcif C₅₆H₄₈ClCu₂N₁₈O₆, was which represented $[(C_7H_6N_2)_8Cu^{II}_2Cl]$ (NO₃)₂. Further, the checkcif report indicated that structure contains large solvent accessible voids. Data were corrected for disordered electron density through use of the SQUEEZE option in PLATON, and the four major platon squeeze void volume add up to 480 Å³ and electrons of 152. According to EA results, each asymmetric unit contains a formate ion as the counter ion of crystallization. They contain 23 electrons. Z value is equal to 4, so there are 92 electrons in this void. The other electrons of 60 are corresponding to about one and a half water molecules in each asymmetric unit, but without any experimental evidence. They might be lost before performing the EA experiment or there might be indeed not any content existing. The details were inserted in platon squeeze details text of the CIF. These formula $C_{57}H_{49}ClCu_2N_{18}O_8$, results matched with the corresponding to $[(C_7H_6N_2)_8Cu^{II}_2Cl] \cdot (HCOO) \cdot (NO_3)_2.$

2. Supporting Tables and Figures

Table S1 Crystal data and structure refinements for 1–4, 6 and 7.

 Table S2 Selected bond lengths (Å) and angles (°) for 1.

Table S3 Selected bond lengths (Å) and angles (°) for 2

Table S4 Selected bond lengths (Å) and angles (°) for 3

Table S5 Selected bond lengths (Å) and angles (°) for 4 (M_5L_6 , $M_5 = Fe_{1.15}Zn_{3.85}$)

 Table S6 Crystal data and structure refinements for 8.

Table S7 Synthesis conditions and product types between 3d ions and TDB.

Table S8 DFT calculation results of the binding energies of the $[TM_5(H_2L)_6]^{4+}$ systems.

Figure S1. The structure of compound **11** containing in **6**. Displacement ellipsoids are drawn at the 10% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure S2. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex **1**.

Figure S3. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex **2**.

Figure S4. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex **3**.

Figure S5. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex 4.

Figure S6. The XPRD patterns of experimental in RT for the complex 5.

Figure S7. TG spectrum of complex **1**, solvent molecules and counter anions loss of 7.9% (calcd: 7.7%).

Figure S8. TG spectrum of complex **2**, seven water and four DMF molecules loss of 8.8% (calcd: 8.4%).

Figure S9. TG spectrum of complex **3**. The loss of 3.1% can be attributed to the removal of two waters and two hydroxyls (calcd: 3.3%), and the second weight loss of

7.3% at the inflexion 358°C corresponds to the formate and chlorine anions (calcd: 7.2%).

Figure S10. TG spectrum of complex **4**. The loss of 1.8% can be attributed to the removal of two waters molecules (calcd: 1.7%), and the second weight loss of 9.0% at the inflexion 436°C corresponds to three waters molecules and four chlorine anions (calcd: 9.1%).

Figure S11. Plot of χ_m^{-1} (\Box) and $\chi_m T$ (Δ) *vs* T and field dependence of magnetization at 2K (inset) for complex **2**.

Figure S12. Plot of $\chi_m^{-1}(\Box)$ and $\chi_m T(\Delta)$ *vs* T for complex **3**.

Figure S13. Plot of $\chi_m^{-1}(\Box)$ and $\chi_m T(\Delta)$ vs T for complex 4.

C ₉₆ H _{71.5} Co ₅ N _{25.}	C ₁₀₂ H ₈₇ Br ₄ Co	Co7H72ClC			
$C_{96}H_{71.5}$ $Co_5N_{25.}$	C ₁₀₂ H ₈₇ BI ₄ C0		C II C E ₂	$C \parallel I \mid D_{m} \mid C \mid$	
$C0_5 N_{25.}$	NO		$C_{96}H_{72}C_{14}Fe_2$	$C_{37}H_{41}BI_4CI$	U57H49CIU
51 114 5	5N ₂₆ O _{11.5}	$0_5 N_{24} O_{12}$	N ₂₄ O ₉ ZI ₃	$Cun_{10}O_2$	$u_2 N_{18} O_8$
2108 9	2475 26	2096 89	2155 38	1076 43	1276 67
3		,,			
Мо-Кα	Μο-Κα	synchrotro	Мо-Ка	Мо-Ка	Synchrotro
		n			n
298 (2)	123(2)	100(2)	123(2)	293(2)	100(2)
monocl	monoclinic	monoclinic	monoclinic	triclinic	tetragonal
inic					
$P2_{1}/n$	C2/c	$P2_{1}/n$	$P2_{1}/c$	<i>P</i> -1	P4/ncc
13.555	41.0956(15)	13.241(3)	12.9691(11)	10.9907(11)	15.327(3)
0(14)					
26.637(24.8982(9)	26.889(5)	26.539(2)	14.3055(15)	15.327(3)
3)					
28.386(28.2361(11)	28.423(6)	29.040(2)	18.0914(19)	25.887(5)
3)					
90	90	90	90	72.806(6)	90.00
99.374(104.629(2)	101.13(3)	104.905(7)	87.022(6)	90.00
2)					
90	90	90	90	72.711(6)	90.00
10112.	27954.7(18)	9929(4)	9658.9(13)	2592.6(5)	6081(3)
4(18)					
4	8	4	4	2	4
1.385	1.176	1.403	1.482	1.379	1.394
0.877	1.779	0.944	1.209	3.593	0.811
0.0637	0.1100	0.0693	0.1192	0.1057	0.1543
0.1641	0.3578	0.2236	0.3849	0.3193	0.3501
	2108.9 3 Mo-Kα 298 (2) monocl inic P2 ₁ /n 13.555 0(14) 26.637(3) 28.386(3) 90 99.374(2) 90 10112. 4(18) 4 1.385 0.877 0.0637 0.1641	2108.9 2475.26 3 Mo-K α Mo-K α 298 (2) 123(2) monocl monoclinic inic $P2_1/n$ C2/c 13.555 41.0956(15) 0(14) 26.637(24.8982(9) 3) 28.386(28.2361(11) 3) 90 90 90.374(104.629(2) 2) 90 90 10112. 27954.7(18) 4(18) 4 8 1.385 1.176 0.877 1.779 0.0637 0.1100 0.1641 0.3578	2108.9 2475.26 2096.89 3 Mo-K α Mo-K α synchrotro n 298 (2) 123(2) 100(2) monocl monoclinic monoclinic inic P21/n C2/c P21/n 13.555 41.0956(15) 13.241(3) 0(14) 26.637(24.8982(9) 26.889(5) 3) 28.386(28.2361(11) 28.423(6) 3) 90 90 90 99.374(104.629(2) 101.13(3) 2) 90 90 90 10112. 27954.7(18) 9929(4) 4(18) 4 8 4 1.385 1.176 1.403 0.877 1.779 0.944 0.0637 0.1100 0.0693 0.1641 0.3578 0.2236	2108.9 2475.26 2096.89 2155.38 Mo-Ka Mo-Ka synchrotro Mo-Ka n 298 (2) 123(2) 100(2) 123(2) monocl monoclinic monoclinic monoclinic inic $P2_1/n$ C2/c $P2_1/n$ $P2_1/c$ 13.555 41.0956(15) 13.241(3) 12.9691(11) 0(14) 26.637(24.8982(9) 26.889(5) 26.539(2) 3) 28.386(28.2361(11) 28.423(6) 29.040(2) 3) 90 90 90 90 90 90.90 90	2108.9 2475.26 2096.89 2155.38 1076.43 3 Mo-K α Mo-K α synchrotro Mo-K α Mo-K α n 298 (2) 123(2) 100(2) 123(2) 293(2) monocli monoclinic monoclinic triclinic inic $P2_1/n$ $C2/c$ $P2_1/n$ $P2_1/c$ $P-1$ 13.555 41.0956(15) 13.241(3) 12.9691(11) 10.9907(11) 0(14) 26.637(24.8982(9) 26.889(5) 26.539(2) 14.3055(15) 3) 28.386(28.2361(11) 28.423(6) 29.040(2) 18.0914(19) 3) 90 90 90 90 90 90 72.806(6) 99.374(104.629(2) 101.13(3) 104.905(7) 87.022(6) 2) 90 90 90 90 90 90 72.711(6) 10112. 27954.7(18) 9929(4) 9658.9(13) 2592.6(5) 4(18) 4 8 4 4 2 1.385 1.176 1.403 1.482 1.379 0.877 1.779 0.944 1.209 3.593 0.0637 0.1100 0.0693 0.1192 0.1057 0.1641 0.3578 0.2236 0.3849 0.3193

 Table S1 Crystal data and structure refinements for 1–4, 6 and 7.

 Table S2 Selected bond lengths (Å) and angles (°) for 1.

Co1—N5	2.083(6)	Co1—O3	2.195(4)
Col—N9	2.089(5)	Co101	2.191(4)
Col—N1	2.104(5)	Col—O2	2.204(4)
Co2—N17	2.067(6)	Co2—O4	2.174(4)

Co2—N13	2.081(6)	Co2—O6	2.187(4)
Co2—N21	2.099(5)	Co2—O5	2.187(4)
Co3—N3	1.979(5)	Co3—O4	1.982(4)
Co3—N15	1.991(6)	Co3—O1	1.986(4)
Co4—N7	1.954(6)	Co4—O5	1.996(4)
Co4—N19	1.984(5)	Co4—O2	2.007(4)
Co5—N23	2.002(5)	Co5—O6	1.980(4)
Co5—N11	1.985(5)	Co5—O3	1.989(4)
Co1…Co2	5.4728(13)	Co1…Co3	3.6374(13)
Co1…Co4	3.6468(12)	Co1…Co5	3.6491(13)
Co2···Co3	3.5777(12)	Co2···Co4	3.6313(14)
Co2···Co5	3.6071(12)	Co3···Co4	3.9297(13)
Co4···Co5	4.2234(14)	Co3Co5	4.1839(12)
Co3—O4—Co2	118.8(2)	Co4—O2—Co1	119.9(2)
Co3—O1—Co1	120.99(19)	Co4—O5—Co2	120.4(2)
Co5—O3—Co1	121.38(18)	Co5—O6—Co2	119.8(2)

Table S3 Selected bond lengths (Å) and angles (°) for 2

Co1—N1	2.051(7)	Co1—O2	2.136(6)
Col—N9	2.057(7)	Col—Ol	2.154(5)
Col—N5	2.063(7)	Col—O3	2.167(5)
Co2—N21	2.052(8)	Co2—O6	2.121(5)
Co2—N17	2.036(7)	Co2—O4	2.138(6)
Co2—N13	2.092(7)	Co2—O5	2.158(6)
Co3—N15	1.950(7)	Co3—O1	1.958(5)
Co3—N3	1.968(7)	Co3—O4	1.958(5)
Co4—N19	1.961(8)	Co4—O5	1.979(5)
Co4—N7	1.960(7)	Co4—O2	1.994(5)
Co5—N23	1.973(8)	Co5—O3	1.969(6)
Co5—N11	1.986(7)	Co5—O6	1.989(6)
Co1…Co2	5.4326(16)	Co1…Co3	3.5852(17)
Co1…Co4	3.5857(18)	Co1…Co5	3.6013(16)
Co2···Co3	3.5550(17)	Co2···Co4	3.6123(15)
Co2···Co5	3.5588(18)	Co3···Co4	4.2083(17)
Co4···Co5	3.8740(17)	Co3Co2	4.0363(19)
Co3—O1—Co1	121.3(3)	Co3—O4—Co2	120.3(3)
Co4—O2—Co1	120.5(3)	Co4—O5—Co2	121.6(3)
Co5—O3—Co1	121.0(3)	Co5—O6—Co2	119.9(3)

Table S4 Selected bond lengths (Å) and angles (°) for $\mathbf{3}$

	0 ()	0 ()	
Co1—N1	2.092(3)	Co1—O3	2.188(3)
Col—N9	2.062(3)	Co1—O1	2.185(3)
Col—N5	2.094(3)	Col—O2	2.169(3)
Co2—N17	2.052(6)	Co2—O4	2.162(3)
Co2—N21	2.068(5)	Co2—O6	2.194(4)
Co2—N13	2.088(5)	Co2—O5	2.154(3)
Co3—N3	1.972(5)	Co3—O1	1.969(3)
Co3—N15	1.979(4)	Co3—O4	1.960(4)

Co4—N7	1.977(4)	Co4—O5	1.970(3)
Co4—N19	1.965(4)	Co4—O2	1.974(3)
Co5—N23	1.973(5)	Co5—O6	1.964(3)
Co5—N11	1.982(4)	Co5—O3	1.957(3)
Co1…Co2	5.4713(14)	Co1…Co3	3.6040(11)
Co1…Co4	3.5965(10)	Co1…Co5	3.6015(11)
Co2···Co3	3.5727(15)	Co2···Co4	3.5829(15)
Co2…Co5	3.5753(13)	Co3···Co4	4.0966(14)
Co4···Co5	3.8544(11)	Co3···Co5	4.1046(12)
Co5—O3—Co1	120.54(13)	Co4—O5—Co2	120.60(17)
Co3—O4—Co2	120.08(15)	Co4—O2—Co1	120.39(14)
Co3—O1—Co1	120.31(14)	Co5—O6—Co2	118.49(17)

Table S5 Selected bond lengths (Å) and angles (°) for 4 (M_5L_6 , $M_5 = Fe_{1.15}Zn_{3.85}$)

M1—N1	2.030(11)	M1—O2	2.164(8)
M1—N5	2.065(11)	M1-01	2.193(8)
M1—N9	2.071(11)	M1—O3	2.190(9)
M2—N21	2.052(9)	M2—O5	2.194(9)
M2—N17	2.068(10)	M2—O4	2.195(7)
M2—N13	2.084(10)	M2—O6	2.215(8)
M3—N15	1.954(11)	M3—O4	1.970(8)
M3—N3	1.969(11)	M3—O1	1.966(8)
M4—N7	1.976(10)	M4—O2	1.976(8)
M4—N19	1.986(10)	M4—O5	1.964(8)
M5—N11	1.960(10)	M5—O6	1.956(7)
M5—N23	1.942(10)	M5—O3	1.969(8)
M1…M2	5.5084(22)	M1…M3	3.6421(22)
M1···M4	3.5855(24)	M1…M5	3.5854(24)
M2…M3	3.6508(24)	M2…M4	3.6249(21)
M2…M5	3.6279(19)	M3…M4	4.1532(25)
M4…M5	4.1156(23)	M3…M5	3.9182(22)
M3—01—M1	122.1(4)	M3—O4—M2	122.3(4)
M4—O2—M1	120.0(4)	M4—O5—M2	121.2(4)
M5—O3—M1	119.0(4)	M5—O6—M2	120.8(4)

Figure S1 The structure of compound 11 containing in 6. Displacement ellipsoids are drawn at the 10% probability level and H atoms are shown as small spheres of arbitrary radii.

Compound	8
Formula	$\overline{C_{32}H_{36}Cl_6Cu_4N_8O_3}$
Fw	1047.55
Radiation type	Мо-Ка
T/K	298(2)
Crystal system	triclinic
Space group	<i>P</i> -1
$a/ m \AA$	12.9982(9)
$b/{ m \AA}$	13.2250(9)
$c/{ m \AA}$	13.8680(10)
$lpha/^{\circ}$	68.0970(10)
$eta/^{\circ}$	74.3680(10)
$\gamma/^{\circ}$	71.4490(10)
$V/\text{\AA}^3$	2065.9(3)
Ζ	2
$D_{\text{calcd}}/\text{mg m}^{-3}$	1.684
μ/mm^{-1}	2.462
$R_{I^{a}}[I \geq 2\sigma(I)]$	0.0415
wR_2^a (all data)	0.1015

Table S6 Crystal data and structure refinements for 8.

The structure of compound **8** has been reported by Zhang^[34], and this is available in the CSD as REFCODE SUCXOD01. The unit-cell data reported in Table S6 are from the independent work by us and its CIF is available in the Supplementary material file for this submission.

3d ions	Synthesis condition	Product type	Ligand	Remark
Co ²⁺	NTP	Mononuclear	TDB	Ref ⁹
Ni ²⁺ , Cu ²⁺	NPT	Mononuclear	TDB	Ref ¹⁰
Cu ²⁺	NPT	Tetranuclear	TDB	Ref ^{11, 12}
Zn ²⁺	80°C, normal pressure	Tetranuclear	TDB	Ref ⁹
Co ²⁺	100°C, solvothermal	Co ₁₆	TDB	Ref ¹³
Co ²⁺ , Ni ²⁺	140°C, solvothermal	Pentanuclear	H ₃ L	Ref ⁹
Ni ²⁺	175°C, hydrothermal	Pentanuclear	H ₃ L	Ref ¹⁰

Table S7. Synthesis conditions and product types between 3d ions and TDB.

NPT = normal pressure and temperature

тм	Total energy of	Spin	Energy of	Energy of	Dinding on array
iona	$[TM_5(H_2L)_6]^{4+}$	multiplicity	TM^{2+}	$(H_2L)^{-}$	(<i>V</i> col/m cl)
IOIIS	(Hartree)	(S)	(Hartree)	(Hartree)	(Kcal/III0I)
Mn ²⁺	-11197.12861340	26	-1150.0232810	-907.156293	-2556.7
Fe ²⁺	-11760.45614320	21	-1262.6435539	-907.156293	-2698.6
Co ²⁺	-12355.61574160	16	-1381.6420922	-907.156293	-2803.3
Ni ²⁺	-12983.17549520	11	-1507.1043131	-907.156293	-2959.3
Cu ²⁺	-13643.72335440	6	-1639.2130839	-907.156293	-2961.9
Zn ²⁺	-14338.06888190	1	-1778.1070143	-907.156293	-2884.0

Table S8. DFT calculation results of the binding energies of the $[TM_5(H_2L)_6]^{4+}$ systems.

Binding energy = $E([TM_5(H_2L)_6]^{4+}) - 5 \times E(TM^{2+}) - 6 \times E((H_2L)^{-})$

1 Hartree =2565.5 KJ/mol=627.5094 Kcal/mol

Figure S2. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex 1.

Figure S3. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex 2.

Figure S4. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex 3.

Figure S5. The XPRD patterns of experimental (blue) and simulation (black) in RT for complex 4.

Figure S6. The XPRD patterns of experimental in RT for the complex 5.

Figure S7. TG spectrum of complex 1, solvent molecules and counter anions loss of 7.9% (calcd: 7.7%).

Figure S8. TG spectrum of complex 2, three and a half water and two DMF molecules loss of 8.8% (calcd: 8.4%).

Figure S9. TG spectrum of complex **3**. The loss of 3.1% can be attributed to the removal of two waters and two hydroxyls (calcd: 3.3%), and the second weight loss of 7.3% at the inflexion 358°C corresponds to the formate and chlorine anions (calcd: 7.2%).

Figure S10. TG spectrum of complex 4. The loss of 2.3% can be attributed to the removal of three waters molecules (calcd: 2.5%), and the second weight loss of 9.0% at the inflexion 436°C corresponds to four chlorine anions (calcd: 9.1%).

Figure S11. Plot of $\chi_m^{-1}(\Box)$ and $\chi_m T(\Delta) vs T$ and field dependence of magnetization at 2K (inset) for complex **2**.

Figure S12. Plot of $\chi_m^{-1}(\Box)$ and $\chi_m T(\Delta)$ vs Tfor complex 3.

Figure S13. Plot of $\chi_m^{-1}(\Box)$ and $\chi_m T(\Delta) vs T$ for complex 4.

3. References

- 1. Z. Otwinowski and W. Minor, Methods Enzymol., 1997, 276, 307.
- 2. R.-H. Blessing, Acta Cryst A, 1995, 51, 33.
- 3. C. Katayama, Acta Cryst A, 1986, 42, 19.
- 4. Bruker. SMART, SAINT and SADABS; Bruker AXS Inc.: Madison, WI, 1998.

5. Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination; University of Gottingen: Germany, 1997.

- 6. S.-S. Feng, M.-L. Zhu, L.-P. Lu and M.-L. Guo, Chem. Commun., 2007, 4785.
- 7. S.-S. Feng, M.-L. Zhu, L.-P. Lu, L. Du, Y.-B. Zhang and T.-W. Wang, Dalton. Trans., 2009, 6385.
- 8. A. L. Spek, J. Appl. Cryst. 2003, 36, 7.
- 9. Y.-L. Zhou, F.-Y. Meng, J. Zhang, M.-H. Zeng and H. Liang, Cryst. Growth. Des, 2009, 9, 1402.

10. K. Isele, V. Broughton, C. J. Matthews, A. F. Williams, G. R. Bernardinelli, P. Franz and S. Decurtins, *J. Chem. Soc., Dalton Trans.*, 2002, 3899.

11. M.-J. Z. Xiu-Fang Shi, Song-Lin Li, Gui-Mei Cai, and J. Li, Chin. J. Inorg. Chem., 2001, 17, 513.

12. K. Isele, P. Franz, C. Ambrus, G. Bernardinelli, S. Decurtins and A. F. Williams, *Inorg. Chem.*, 2005, 44, 3896.

13. Y.-Q. Hu, M.-H. Zeng, K. Zhang, S. Hu, F.-F. Zhou and M. Kurmoo, *J. Am. Chem. Soc.*, 2013, **135**, 7901.