Electronic Supplementary Information for

Synthesis of hierarchal Bi_2S_3 nanoflowers via a topotactic transformation from hierarchal Bi_2WO_6 nanoflowers and their supercapacitor performance

K. L. Liu,^{a,c} F. Chen,^a Y. Liu,^a D. Li^{b,*} and W. D. Shi^{a,*}

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.

^b Institute for Energy Research, Jiangsu University, Zhenjiang, Jiangsu, China.

^c Department of Physics, Zhoukou Normal University, Zhoukou, Henan, China.

FIGURE

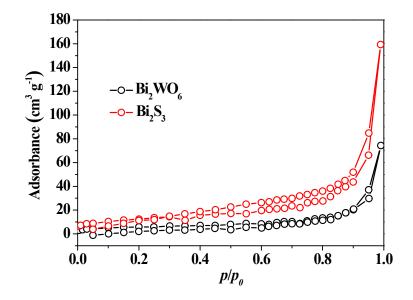


Fig. S1 Adsorption-desorption isotherms of both Bi₂S₃ and Bi₂WO₆.

The N₂ adsorption-desorption isotherm for both Bi_2S_3 and Bi_2WO_6 are characteristic of a type IV isotherm with a type H1 hysteresis loop according to Brunauer-Deming-Deming-Teller (BDDT) classification, and the BET surfaces area of Bi_2S_3 and Bi_2WO_6 are 20.0 m² g⁻¹ and 45.4 m² g⁻¹, respectively.