Supporting Information

Dicyanoquinodimethane substituted benzothiadiazole for efficient small-molecule solar cells

Prabhat Gautam¹, Rajneesh Misra^{1*} and Ganesh D. Sharma^{2*}

¹Department of Chemistry, Indian Institute of Technology, Indore (MP) 452017

²Molecular Electronics and Optoelectronics Research Laboratory,

Department of Physics, The LNMIIT (Deemed University) Jamdoli, Jaipur (Rajasthan), India

Experimental details:

Chemicals were used as received unless otherwise indicated. All the oxygen or moisture sensitive reactions were carried out under argon/nitrogen atmosphere. ¹H NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using residual protonated solvent as an internal standard {CDCl₃, 7.26 ppm}. ¹³C NMR spectra were recorded using a 100 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using the solvent as internal standard {CDCl₃, 7.26 ppm}. ¹³C NMR spectra were recorded using a 100 MHz spectrometer. Chemical shifts are reported in delta (δ) units, expressed in parts per million (ppm) downfield from tetramethylsilane using the solvent as internal standard {CDCl₃, 77.0 ppm}. The ¹H NMR splitting patterns have been described as "s (singlet), d (doublet) and m (multiplet)". UV-visible absorption spectra of all compounds were recorded in DCM. The density functional theory (DFT) calculation were carried out at the B3LYP/6-31G** level for C, N, S, H in the Gaussian 09 program. HRMS was recorded on TOF-Q mass spectrometer.

Preparation of BTD 2

To a stirred solution of 3-ethynylpyridine (1.2 mmol), BTD 1 (1 mmol) in THF, and TEA (1:1, v/v) were added [PdCl₂(PPh₃)₂] (10 mg, 0.014 mmol) and CuI (2 mg, 0.01 mmol) under an argon flow at room temperature. The reaction mixture was stirred for 15 h at 70 °C, and then cooled to room temperature. The solvent was evaporated under reduced pressure, and the mixture was purified by SiO₂ chromatography with DCM, to obtain BTD 2 as red solid (362 mg, yield: 72%).¹H NMR (400 MHz, CDCl₃, δ in ppm): 8.88 (s, 1H), 8.59 (s, 1H), 7.93 (d, *J* = 8 Hz, 1H,),

7.79 (d, J = Hz, 1H,), 7.74 (d, J = 7.3 Hz, 1H,), 7.48 (d, J = 8.5 Hz, 2H,), 7.30–7.24 (m, 6H), 7.13-7.00 (m, 7H); ¹³C NMR (100 MHz, CDCl₃, δ in ppm): 155.2, 153.1, 152.40, 152.38, 148.9, 148.7, 148.5, 147.2, 138.7, 134.8, 133.5, 130.0, 129.9, 129.4, 126.4, 125.1, 123.5, 123.1, 122.4, 114.1, 100.5, 92.0, 88.7; HRMS (ESI - TOF) m/z calcd for C₃₃H₂₀N4S+H: 505.1481 [M+H]+, found 505.1481 [M + H]+.

Preparation of BTD 3

To a stirred solution of BTD 2 (0.5 mmol) was added TCNE (64 mg, 0.5 mmol) under an argon flow at room temperature. The mixture was refluxed at 40 °C for 24 h. The solvent was removed in vacuo, and the product was purified by SiO₂ column chromatography with DCM:EtOAc (100:1) as the eluent to yield BTD 3 as a dark colored solid (240mg, yield: 76%).¹H NMR (400 MHz, CDCl3, δ in ppm): 8.91–8.90 (m, 1H), 8.66–8.64 (m, 1H), 8.05 (d, J = 7.56 Hz, 1H), 7.97– 7.91 (m, 2H), 7.64 (m, J = 7.52, 2H), 7.38–7.34 (m, 4H), 7.25-7.21 (m, 4H), 7.17 (d, J = 7Hz, 3H), 6.87 (d, J = 7.56 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, δ in ppm): 163.9, 163.4, 154.5, 153.6, 152.6, 150.8, 149.9, 144.5, 139.0, 132.4, 132.1, 131.8, 130.0, 126.9, 126.6, 125.0, 122.4, 121.8, 118.0, 113.5, 113.0, 111.5, 110.8, 97.6, 92.4, 87.6, 79.7;HRMS (ESI - TOF) m/z calcd for C₃₉H₂₀N₈S+H: 633.1604 [M+H]⁺, found 633.1603 [M + H]⁺.

Preparation of BTD 4

To a stirred solution of BTD 2 (0.5 mmol) was added TCNQ (102 mg, 0.5 mmol) under an argon flow at room temperature. The mixture was refluxed at 100 °C for 24 h. The solvent was removed in vacuo, and the product was purified by SiO₂ column chromatography with DCM:EtOAc (100:5) as the eluent to yield BTD 3 as a dark colored solid (230 mg, yield: 62%).¹H NMR (400 MHz, CDCl₃, δ in ppm): 8.90-8.89 (m, 1H), 8.66-8.64 (m, 1H), 7.97-7.94 (m, 1H), 7.89-7.82 (m, 2H), 7.45-7.27 (m, 9H), 7.22-7.12 (m, 8H), 6.86 (d, J = 7.3, 2H); ¹³C NMR (100 MHz, CDCl₃, δ in ppm): 167.4, 154.5, 153.8, 152.6, 151.6, 151.1, 150.3, 149.9, 145.2, 139.0, 135.7, 134.9, 134.4, 133.7; 131.8, 131.6, 129.9, 128.3, 126.7, 126.6, 126.2, 125.9, 123.2, 121.3, 118.9, 114.0, 112.4, 111.9, 96.7, 92.0, 87.6, 75.2; HRMS (ESI-TOF) m/z calcd for C45H24N8S+H: 709.1917 [M+H]+, found709.1931 [M + H]+.

Scheme1. Synthesis of BTD2-4

Active layer	$\mu_h (cm^2/Vs)$	μ_e (cm ² /Vs)	$\mu_{\rm h}/\mu_{\rm e}$
BTD3:PC ₇₁ BM ^a	5.04x10 ⁻⁶	2.56x10 ⁻⁴	50.2
BTD3:PC ₇₁ BM ^b	5.45x10 ⁻⁵	2.46x10-4	4.52
BTD4:PC ₇₁ BM ^a	6.48x10 ⁻⁶	2.52x10 ⁻⁴	39
BTD4:PC ₇₁ BM ^b	8.4x10 ⁻⁵	2.41x10 ⁻⁴	2.86

Table S1 Hole and electron mobilities in the active layers processed under different conditions

^aas cast from CF

^bTSA

Figure S1 Normalized absorption spectra of **BTD3:PC**₇₁**BM** (1:2) and (b) **BTD4:PC**₇₁**BM** (1:2) thin films processed under different conditions

Figure S2 Variation of J_{sc} with illumination intensity for the devices based on BTD4:PC₇₁BM

Figure S3 ¹H NMR of BTD2

Figure S4¹³C NMR of BTD2

Figure S5 ¹H NMR of BTD3

Figure S6 ¹³C NMR of BTD3

Figure S7 ¹H NMR of BTD4

Figure S8¹³C NMR of BTD4

Figure S10 HRMSof BTD3

Figure S11 HRMSof BTD4