

Supporting information

Fig. S1 Optimized structures of $PyPF_2$, $PyAsH_2$, and $PyAsF_2$ complexes with NH_3 , H_2O , H_2S , PH_3 , and H_2CO .

Fig. S2. Gradient isosurfaces of the complexes of $PyPH_2\cdots H_2CO$, $PyAsH_2\cdots H_2CO$, and those of $PyZF_2$ with H_2O , NH_3 , H_2S , PH_3 , and H_2CO

Fig. S3 Molecular maps of pnicogen-bonded complexes. The bond and ring critical points are represented by red and yellow points, respectively.

Table S1 Second-order perturbation energy ($E^{(2)}$, kJ/mol) of the weak secondary interaction in the complexes before and after the protonation on the N atom of pyridine.

	No protonation		protonation	
	$E^{(2)}$	type	E ⁽²⁾	type
PyPH ₂ ···H ₂ CO	1.8	$Lp_P \rightarrow BD*_{C-H}$	0.3	$Lp_P \rightarrow BD*_{C-O}$
$PyPF_2 \cdots H_2S$	1.7	$Lp_F \rightarrow BD*_{S-H}$	0.7	$Lp_F \rightarrow BD*_{S-H}$
$PyPF_2 \cdots PH_3$	4.4	$Lp_F \rightarrow BD*_{P-H}$	2.1	$Lp_F \rightarrow BD*_{P-H}$
$PyPF_2 \cdots H_2O$	0.2	$Lp_F \rightarrow BD*_{O-H}$	1.2	$Lp_F \rightarrow BD*_{O-H}$
PyPF ₂ …NH ₃	1.5	$Lp_F \rightarrow BD*_{N-H}$	5.2	$Lp_F \rightarrow BD*_{N-H}$
PyPF ₂ …H ₂ CO	0.5	$Lp_F \rightarrow BD*_{C-H}$	2.0	$Lp_F \rightarrow BD*_{C-O}$
PyAsH ₂ …H ₂ CO	1.0	$Lp_{As} \rightarrow BD*_{C-H}$	0.4	$Lp_{As} \rightarrow BD*_{C-O}$
$PyAsF_2 \cdots H_2S$	3.0	$Lp_F \rightarrow BD*_{S-H}$	0.8	$Lp_F \rightarrow BD*_{S-H}$
PyAsF2···PH3	5.6	$Lp_F \rightarrow BD*_{P-H}$	3.8	$Lp_F \rightarrow BD*_{P-H}$
$PyAsF_2 \cdots H_2O$	0.9	$Lp_F \rightarrow BD*_{O-H}$	1.4	$Lp_F \rightarrow BD*_{O-H}$
PyAsF2…NH3	2.0	$Lp_F \rightarrow BD*_{N-H}$	7.0	$Lp_F \rightarrow BD*_{N-H}$
PyAsF ₂ …H ₂ CO	1.2	$Lp_F \rightarrow BD*_{C-H}$	2.3	$Lp_F \rightarrow BD*_{C-O}$

Table S2 Second-order perturbation energies ($E^{(2)}$, kJ/mol) of other important orbital interactions in the complexes before and after the protonation on the N atom of pyridine.

	No protonation		protonation	
	$E^{(2)}$	type	$E^{(2)}$	type
$PyPH_2 \cdots H_2S$	3.4	$Lp_{P} \rightarrow BD*_{S\text{-}H}$	0.5	$Lp_{P} \rightarrow BD*_{S\text{-}H}$
$PyPH_2 \cdots PH_3$	7.5	$Lp_P \rightarrow BD*_{P-H}$	2.4	$Lp_P \rightarrow BD*_{P-H}$
PyPH ₂ …H ₂ O	2.0	$Lp_P \rightarrow BD*_{O-H}$	2.1	$Lp_{P} \rightarrow BD*_{O-H}$
PyPH ₂ …NH ₃	1.9	$Lp_P \rightarrow BD*_{N-H}$	1.9	$Lp_P \rightarrow BD*_{N-H}$
PyPF ₂ …PH ₃	3.4	$Lp_P \rightarrow BD*_{P-H}$	2.3	$Lp_P \rightarrow BD*_{P-H}$
$PyPF_2 \cdots NH_3$	0.5	$Lp_P \rightarrow BD*_{N-H}$	2.8	$Lp_P \rightarrow BD*_{N-H}$
$PyAsH_2 \cdots H_2S$	3.6	$Lp_{As} \rightarrow BD*_{S-H}$	0.4	$Lp_{As} \rightarrow BD*_{S-H}$
$PyAsH_2 \cdots PH_3$	7.5	$Lp_{As} \rightarrow BD*_{P-H}$	2.6	$Lp_{As} \rightarrow BD*_{P-H}$
PyAsH ₂ …H ₂ O	2.3	$Lp_{As} \rightarrow BD*_{O\text{-}H}$	2.5	$Lp_{As} \rightarrow BD*_{O-H}$
PyAsH ₂ …NH ₃	1.8	$Lp_{As} \rightarrow BD*_{N-H}$	1.9	$Lp_{As} \rightarrow BD*_{N-H}$
PyAsF ₂ …PH ₃	2.3	$Lp_{As} \rightarrow BD*_{P-H}$	1.5	$Lp_{As} \rightarrow BD*_{P-H}$
$PyAsF_2 \cdots NH_3$	1.0	$Lp_{As} \rightarrow BD*_{N-H}$	1.7	$Lp_{As} \rightarrow BD*_{N-H}$

Table S3 The most negative MEP (V_{min} , kJ/mol) on the Lewis base atom in NH₃, H₂O, H₂S, PH₃, and H₂CO as well as the most positive MEP (V_{max} , kJ/mol) on the pnicogen atom in the protonated molecules

	\mathbf{V}_{\min}		V _{max}
H_2S	-74.7	H^+ - $PyPH_2$	412.4
PH ₃	-77.6	H^+ - $PyPF_2$	428.8
H ₂ O	-149.1	$\mathrm{H}^{+}\text{-}\mathrm{PyAsH}_{2}$	414.9
NH ₃	-165.5	H^+ -PyAsF ₂	445.6
H ₂ CO	-146.4		

Systems	EX	REP
PyPH ₂ …H ₂ S	-25.7(-40.6)	42.6(70.8)
$PyPH_2\cdots PH_3$	-34.2(-47.9)	56.3(82.9)
PyPH ₂ …H ₂ O	-20.6(-36.7)	35.0(64.2)
$PyPH_2 \cdots NH_3$	-32.7(-79.5)	54.0(141.0)
PyPH ₂ …H ₂ CO	-33.8(-36.2)	56.7(63.6)
$PyPF_2 \cdots H_2S$	-22.5(-57.8)	38.4(104.8)
PyPF ₂ …PH ₃	-21.5(-60.3)	36.4(109.3)
PyPF ₂ …H ₂ O	-27.6(-49.3)	49.2(92.5)
PyPF ₂ ···NH ₃	-47.0(-192.5)	81.1(366.6)
PyPF ₂ ····H ₂ CO	-32.6(-74.1)	56.1(136.1)
$PyAsH_2 \cdots H_2S$	-27.4 (-46.9)	45.6(82.6)
PyAsH ₂ …PH ₃	-35.6(-56.4)	59.1(99.3)
$PyAsH_2 \cdots H_2O$	-23.0(-44.4)	38.8(78.8)
$PyAsH_2 \cdots NH_3$	-40.6(-96.2)	67.6(173.6)
PyAsH ₂ …H ₂ CO	-37.7(-45.1)	63.6(80.2)
$PyAsF_2 \cdots H_2S$	-36.4(-79.8)	62.9(148.7)
PyAsF ₂ …PH ₃	-34.8(-90.2)	60.0(168.8)
PyAsF2…H2O	-47.2(-84.7)	83.8(157.5)
PyAsF ₂ …NH ₃	-79.2(-245.7)	140.8(482.6)
PyAsF2····H2CO	-50.3(-94.1)	88.3(176.2)

Table S4 Exchange (EX) and repulsion (REP) contributions to the interaction energy in the complexes. All energies are in kJ/mol.

Note: Data in parentheses are from the protonated complexes.

	1	1	
	ρ	$\nabla^2 \rho$	Н
H^+ -PyPH ₂ ···H ₂ S	0.0110(0.0032)	0.0301	0.0007
H^+ - $PyPH_2$ ··· PH_3	0.0116(0.0025)	0.0274	0.0004
H^+ - $PyPH_2$ ··· H_2O	0.0130(0.0051)	0.0520	0.0018
H^+ - $PyPH_2$ ··· NH_3	0.0191(0.0099)	0.0527	0.0003
H^+ - $PyPH_2$ ··· H_2CO	0.0129(0.0028)	0.0543	0.0019
$H^+\text{-}PyPF_2\cdots H_2S$	0.0149(0.0101)	0.0314	0.0000
H^+ - $PyPF_2$ ··· PH_3	0.0143(0.0088)	0.0263	-0.0001
H^+ -PyPF ₂ ···H ₂ O	0.0184(0.0099)	0.0615	0.0012
H^+ - $PyPF_2$ ···N H_3	0.0393(0.0276)	0.0581	-0.0069
H^+ -PyPF ₂ ···H ₂ CO	0.0228(0.0126)	0.0661	0.0001
$H^+\text{-}PyAsH_2\cdots H_2S$	0.0120(0.0039)	0.0299	0.0005
H^+ -PyAs H_2 ···P H_3	0.0128(0.0035)	0.0275	0.0002
H^+ -PyAs H_2 ···H_2O	0.0145(0.0061)	0.0553	0.0018
H^+ -PyAs H_2 ···N H_3	0.0214(0.0110)	0.0570	0.0001
H^+ -PyAs H_2 ···H_2CO	0.0145(0.0038)	0.0570	0.0019
$H^+\text{-}PyAsF_2\cdots H_2S$	0.0188(0.0118)	0.0334	-0.0008
H^+ -PyAsF ₂ ···PH ₃	0.0193(0.0114)	0.0281	-0.0012
H^+ -PyAsF ₂ ···H ₂ O	0.0243(0.0121)	0.0750	0.0005
H^+ -PyAsF ₂ ···NH ₃	0.0470(0.0299)	0.0683	-0.0104
H ⁺ -PyAsF ₂ …H ₂ CO	0.0269(0.0131)	0.0751	-0.0004

Table S5 Electron density (ρ , au), Laplacian ($\nabla^2 \rho$, au), and energy density (H, au) at the intermolecular BCP in the protonated complexes

Note: Data in parentheses are the difference of electron density at the intermolecular BCP between the protonated complexes and the neutral analogues.

Table S6 Interaction energies (ΔE , kJ/mol) of pnicogen bonds in the complexes of PyPH₃⁺

	ΔE
$PyPH_3^+\cdots H_2S$	-34.0
PyPH ₃ ⁺ ···PH ₃	-37.2
$PyPH_3^+\cdots H_2O$	-54.9
PyPH ₃ ⁺ ···NH ₃	-65.5
PyPH ₃ ⁺ ···H ₂ CO	-59.7

System	ES	EX	REP	POL	DISP
$H_2O\cdots PyPH_2$	-49.9	-63.4	114.0	-18.2	-11.4
H_2O ···PyPF ₂	-44.8	-57.7	103.7	-15.8	-12.5
$H_2O\cdots PyAsH_2$	-50.2	-63.5	114.3	-18.5	-11.6
H_2O ···PyAsF ₂	-45.0	-57.9	104.0	-15.8	-12.5
$NH_3 \cdots H^+ - PyPH_2$	-122.7	-128.4	247.6	-67.3	-19.7
$NH_3 \cdots H^+ - PyPF_2$	-131.8	-138.3	268.2	-76.4	-20.2
$NH_3 \cdots H^+$ - $PyAsH_2$	-123.0	-128.9	248.6	-67.5	-20.0
$NH_3 \cdots H^+ - PyAsF_2$	-131.2	-137.8	267.2	-75.7	-20.2

Table S7 Electrostatic (ES), exchange (EX), repulsion (REP), polarization (POL), and dispersion (DISP) contributions to interaction energy in the complexes. All are in kJ/mol

Table S8 Electron densities (ρ , au) at the intermolecular BCPs of hydrogen bonding (HB) and pnicogen bonding (ZB) in the trimers as well as their differences ($\Delta \rho$, au) compared to the corresponding dimers

	ρ_{HB}	$ ho_{ZB}$	$\Delta\rho_{HB}$	$\Delta\rho_{ZB}$
H ₂ O…PyPH ₂ …H ₂ O	0.0313	0.0082	0.0008	0.0002
$H_2O\cdots PyPF_2\cdots H_2O$	0.0287	0.0097	0.0006	0.0011
$H_2O\cdots PyAsH_2\cdots H_2O$	0.0316	0.0089	0.0012	0.0005
$H_2O\cdots PyAsF_2\cdots H_2O$	0.0286	0.0131	0.0004	0.0009
$NH_3 \cdots H^+ - PyPH_2 \cdots NH_3$	0.0534	0.0169	-0.0032	-0.0021
$NH_3 \cdots H^+ - PyPF_2 \cdots NH_3$	0.0561	0.0326	-0.0050	-0.0067
$NH_3\cdots H^+\text{-}PyAsH_2\cdots NH_3$	0.0533	0.0191	-0.0035	-0.0023
$NH_3 \cdots H^+-PyAsF_2 \cdots NH_3$	0.0550	0.0550	-0.0058	-0.0055

Table S9 The most positive MEP on the σ -hole of pnicogen atom ($V_{\max,\sigma-\text{hole}}$, kJ/mol) and on the positively charged proton ($V_{\max,H}$, kJ/mol), the most negative MEP on the nitrogen atom ($V_{\min,N}$, kJ/mol) in the dimers, and their differences (ΔV , kJ/mol) compared to the isolated molecules

	$V_{\max,\sigma\text{-hole}}$	$\Delta V_{\max,\sigma-hole}$		V _{min,N}	$\Delta V_{ m min,N}$
H ₂ O…PyPH ₂	106.7	14.6	PyPH ₂ …H ₂ O	-164.1	-9.2
$H_2O\cdots PyPF_2$	112.9	9.7	PyPF ₂ …H ₂ O	-135.3	-3.8
H_2O ···PyAs H_2	108.4	12.8	PyAsH ₂ …H ₂ O	-165.8	-11.9
H_2O ···PyAsF ₂	125.4	4.4	PyAsF ₂ …H ₂ O	-135.2	-2.8
	$V_{\max,\sigma\text{-hole}}$	$\Delta V_{ m max,\sigma-hole}$		$V_{\rm max,H}$	$\Delta V_{ m min,H}$
NH ₃ ···H ⁺ -PyPH ₂	377.8	-34.6	H^+ - $PyPH_2$ ···N H_3	604.4	-25.3
NH ₃ ···H ⁺ -PyPF ₂	392.1	-36.7	H^+ -PyPF ₂ ···NH ₃	617.9	-37.9
$NH_3 \cdots H^+$ - $PyAsH_2$	380.7	-34.2	H^+ -PyAs H_2 ···N H_3	600.6	-27.6
NH ₃ …H ⁺ -PyAsF ₂	407.1	-38.5	H^+ -PyAsF ₂ ···NH ₃	606.4	-44.1

Table S10 Electrostatic (ES), polarization (POL), and dispersion (DISP) contributions

to the interaction energy of hydrogen bond in the trimers. All are in kJ/mol

	ES	POL	DISP
H ₂ O…PyPH ₂ …H ₂ O	-51.7(3.6%)	-19.1(4.9%)	-11.2(-1.8%)
$H_2O\cdots PyPF_2\cdots H_2O$	-45.6(1.8%)	-16.3(3.2%)	-12.4(-0.8%)
$H_2O\cdots PyAsH_2\cdots H_2O$	-52.3(3.8%)	-19.4(5.2%)	-11.2(-2.1%)
$H_2O\cdots PyAsF_2\cdots H_2O$	-45.6(1.3%)	-16.2(2.5%)	-12.4(-0.8%)
NH ₃ ···H ⁺ -PyPH ₂ ···NH ₃	-116.4(-5.1%)	-61.2(-9.1%)	-19.1(-3.0%)
$NH_3 \cdots H^+ - PyPF_2 \cdots NH_3$	-122.1(-7.4%)	-66.4(-13.1%)	-19.4(-4.0%)
$NH_3 \cdots H^+-PyAsH_2 \cdots NH_3$	-116.0(-5.7%)	-60.8(-9.9%)	-19.3(-3.5%)
NH ₃ ···H+-PyAsF ₂ ···NH ₃	-119.7(-8.8%)	-64.2(-15.2%)	-19.3(-4.5%)

Note: Data in parentheses are the increased/decreased percentage of each energy term in the trimer relative to the corresponding dimer.

	ES	POL	DISP
H ₂ O…PyPH ₂ …H ₂ O	-14.8(5.7%)	-3.4(9.7%)	-5.9(-3.3%)
$H_2O\cdots PyPF_2\cdots H_2O$	-20.6(6.7%)	-4.7(20.5%)	-5.9(1.7%)
$H_2O\cdots PyAsH_2\cdots H_2O$	-16.4(13.9%)	-4.3(19.4%)	-6.0(-1.6%)
$H_2O\cdots PyAsF_2\cdots H_2O$	-37.8(4.4%)	-8.7(10.1%)	-7.7(1.3%)
$NH_3 \cdots H^+ - PyPH_2 \cdots NH_3$	-54.0(-13.9%)	-18.6(-19.1%)	-11.3(-9.6%)
$NH_3 \cdots H^+ - PyPF_2 \cdots NH_3$	-109.4(-20.0%)	-49.4(-27.1%)	-16.3(-11.4%)
$NH_3 \cdots H^+-PyAsH_2 \cdots NH_3$	-65.1(-13.5%)	-22.9(-18.2%)	-12.0(-7.7%)
NH ₃ ···H ⁺ -PyAsF ₂ ···NH ₃	-159.9(-14.5%)	-76.5(-19.9%)	-17.0(1.2%)

Table S11 Electrostatic (ES), polarization (POL), and dispersion (DISP) contributions to the interaction energy of pnicogen bond in the trimers. All are in kJ/mol

Note: Data in parentheses are the increased/decreased percentage of each energy term in the trimer relative to the corresponding dimer.