Electronic Supporting Information

A DFT+U study on the contribution of 4f electrons to oxygen vacancy formation and migration in Ln-doped CeO₂

Musa Alaydrus^{*1,2}, Mamoru Sakaue^{*1,3}, and Hideaki Kasai^{1,4,5}

¹Department of Applied Physics, Graduate School of Engineering, Osaka University,

2-1 Yamadaoka Suita, Osaka, 565-0871, Japan

²Department of Engineering Physics, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha 10, Bandung, 40132, Indonesia.

³Center for International Affairs, Graduate School of Engineering, Osaka University,

2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

⁴National Institute of Technology, Akashi College, 679-3 Nishioka,

Uozumi-cho, Akashi, Hyogo 674-8501, Japan

⁵Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan

*E-mail: musa@dyn.ap.eng.osaka-u.ac.jp

sakaue@dyn.ap.eng.osaka-u.ac.jp

Figure S1. Total DOS and projected DOS obtained from hybrid functional calculations [1].

Table S1. The vacancy formation energies, E_{f}^{vac} , and migration energies, ΔE_{m} , for ip1, ip2, and ip3. The calculations were conducted by considering 4f electrons frozen at the core (Ln_{4f@core}) and as valence electrons with $U_{eff@Ln} = 0$ eV as well as with the fitted $U_{eff@Ln}$ specified in the computational details section in the main manuscript.

Systems	Ln _{4f} Treatment	$\Delta E_{\rm m} ({ m eV})$			E ^{vac} (aV)
		ip1(fwd/bwd)	ip2(fwd/bwd)	ip3(fwd/bwd)	$E_f(ev)$
LCO	$U_{\rm eff@La} = 0 \ \rm eV$	0.338/0.424	0.811/0.782	1.591/1.591	-0.614
	$U_{\rm eff@La} = 4.5 \ \rm eV$	0.305/0.465	0.794/0.811	1.695/1.695	-0.662
CeO _{2-x}	$U_{\rm eff@Ce}$ * = 5 eV		0.442/0.442		3.693
	Ce _{4f@core} **	0.370/0.486	0.798/0.809	1.629/1.629	4.546
РСО	$U_{\rm eff@Pr} = 0 \ \rm eV$	0.534/0.333	0.395/0.330	0.968/0.968	3.127
	$U_{\rm eff@Pr} = 4 \rm eV$	0.466/0.414	0.810/0.746	1.361/1.361	1.640
	Pr _{4f@core}	0.437/0.464	0.801/0.771	1.356/1.356	-0.590
NCO	$U_{\rm eff@Nd} = 0 \ \rm eV$	0.536/0.366	0.700/0.662	0.898/0.898	1.077
	$U_{\rm eff@Nd}$ = 3.5 eV	0.497/0.431	0.788/0.747	1.325/1.325	-0.100
	Nd _{4f@core}	0.501/0.447	0.799/0.740	1.373/1.373	-0.608
PmCO	$U_{\rm eff@Pm} = 0 \rm eV$	0.585/0.373	0.831/0.697	1.171/1.171	0.683
	$U_{\rm eff@Pm} = 3.5 \ \rm eV$	0.544/0.391	0.827/0.718	1.293/1.293	-0.581
	Pm _{4f@core}	0.574/0.430	0.793/0.700	1.256/1.256	-0.656
SCO	$U_{\rm eff@Sm} = 0 \rm eV$	0.591/0.392	0.776/0.654	1.001/1.001	0.360
	$U_{\rm eff@Sm} = 4 \rm eV$	0.578/0.425	0.814/0.710	1.193/1.193	-0.622
	Sm _{4f@core}	0.612/0.404	0.788/0.669	1.189/1.189	-0.697
ECO	$U_{\rm eff@Eu} = 0 \rm eV$	0.571/0.389	0.836/0.714	1.068/1.068	-0.293
	$U_{\rm eff@Eu} = 4 \rm eV$	0.598/0.435	0.839/0.730	1.230/1.230	-0.650
GCO	$U_{\rm eff@Gd} = 0 \ \rm eV$	0.723/0.337	0.775/0.575	1.015/1.015	-0.636
	$U_{\rm eff@Gd} = 4 \ \rm eV$	0.708/0.355	0.774/0.590	1.039/1.039	-0.793
	Gd _{4f@core}	0.734/0.363	0.766/0.576	1.018/1.018	-0.793
YCO		0.818/0.316	0.750/0.503	0.906/0.906	-0.891
*	$U_{\rm eff} = 5 \text{ eV}$ for all Ce 4f-electrons.				
**	The 4f-electrons of two reduced Ce ions as virtual dopants in the presence of an oxygen vacancy, are set as core electrons.				

Figure S2. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of La-doped CeO₂ at initial and final states of ip1.

Figure S3. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Nd-doped CeO₂ at initial and final states of ip1. Left panel shows the 4fval results while right panel shows the 4fcore results.

Figure S4. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Pm-doped CeO₂ at initial and final states of ip1. Left panel shows the 4fval results while right panel shows the 4fcore results.

Figure S5. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Sm-doped CeO₂ at initial and final states of ip1. Left panel shows the 4fval results while right panel shows the 4fcore results.

Figure S6. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Eu-doped CeO₂ at initial and final states of ip1.

Figure S7. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Gd-doped CeO₂ at initial and final states of ip1. Left panel shows the 4fval results while right panel shows the 4fcore results.

Figure S8. Charge density plots within energy range of O_{2p} -VB, total and projected DOS and the corresponding COHP curves of Y-doped CeO₂ at initial and final states of ip1.

[1] A. D. Becke, *The Journal of Chemical Physics*, 1993, 98, 1372-1377.