Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supporting Information

Effects of substituent branching and chirality on physical properties of ionic liquids based on cationic ruthenium sandwich complexes

Tomomi Higashi, Takahiro Ueda, Tomoyuki Mochida*

Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan. E-mail: tmochida@platinum.kobe-u.ac.jp

(b) *chiral-*[1][PF₆]

Fig. S1 DSC traces of salts that exhibited melting (gl.: glassy phase, *liq*.: liquid phase).

Fig. S2 Ortep diagrams of molecular structures of (a) $[2][PF_6]$ and (b) [3][FSA]. One of the disordered parts in the substituent in $[2][PF_6]$ is displayed in gray.

	-			
°C	<i>rac</i> -[1][PF ₆]	rac-[1][FSA]	$rac-[1][Tf_2N]$	[3][Tf ₂ N]
-20		40300	40300	9300
-15		23800	22200	5980
-10		13200	12100	3820
-5		7440	6850	2320
0		4710	4260	1580
5	248000	3020	2720	1090
10	118000	1970	1800	766
15	61900	1350	1220	543
20	33600	960	861	409
25	19600	700	623	312
30	11800	511	447	239
35	7420	381	336	187
40	5040	285	251	147
45	2840	221	189	115
50	1860	173	146	92

Table S1 Viscosity data (mPa s) for $[1]X (X = PF_6, FSA, Tf_2N)$ and $[3][Tf_2N]$

Table S2	Viscosity data
----------	----------------

Table S3Viscosity data(mPa s) for [2][TfaN]

(mPa s) for [2][FSA]		(mPa s) f	(mPa s) for $[2][Tf_2N]$	
°C	[2][FSA]	°C	[2][Tf ₂ N]	
-9	23800	-20	87200	
-5	14700	-16	47100	
-1	9680	-10	21100	
5	5440	-6	13000	
9	3790	0	6860	
15	2340	4	4260	
19	1700	10	2410	
25	1110	14	1740	
29	836	20	1100	
35	554	25	775	
39	430	30	549	
45	292	34	428	
50	218	40	296	
		44	236	
		50	172	

	[2][PF ₆]	[3][PF ₆]	[3][FSA]
Empirical formula	C ₂₀ H ₂₉ F ₆ OPRu	C ₂₀ H ₂₉ F ₆ OPRu	$C_{20}H_{29}F_2NO_5RuS_2$
Formula weight	531.47	531.47	566.63
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> –1	<i>P</i> –1	<i>P</i> –1
<i>a</i> (Å)	7.2400(9)	10.389(3)	7.928(3)
<i>b</i> (Å)	18.137(2)	10.393(3)	9.542(4)
<i>c</i> (Å)	18.786(2)	11.050(3)	16.403(6)
α (°)	114.7030(10)	84.703(4)	98.073(5)
β (°)	94.018(2)	67.159(4)	101.571(4)
γ (°)	97.896(2)	82.242(4)	103.610(4)
Volume (Å ³)	2197.4(5)	1088.4(5)	1158.3(8)
Ζ	4	2	2
$d_{\text{calcd.}} (\text{mg m}^{-3})$	1.606	1.622	1.625
<i>T</i> (K)	100	100	100
$\mu (\mathrm{mm}^{-1})$	0.845	0.853	0.904
Reflections collected	10721	5053	5408
Independent reflections	7656	3740	4022
	$(R_{\rm int} = 0.0204)$	$(R_{\rm int} = 0.0162)$	$(R_{\rm int} = 0.0260)$
<i>F</i> (000)	1080	540	580
$R_1^{a}, wR_2^{b} (I > 2\sigma(I))$	0.0258, 0.0656	0.0256, 0.0579	0.0577, 0.1556
R_1^a , wR_2^b (all data)	0.0286, 0.0679	0.0292, 0.0597	0.0610, 0.1629
Goodness-of-fit on F^2	1.038	1.060	1.114
Completeness to θ (%)	98.3	97.3	98.0
Parameters	587	263	281
Largest diff. peak and hole	1.040 and -0.562	0.554 and -0.473	2.362 and -1.235

Table S4Crystallographic parameters

^{*a*} $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, b) wR_2 = [\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2]^{1/2}$