### **Supporting information**

### -for-

### Catalytic effect of water, water dimer and water trimer on the H<sub>2</sub>S

### +<sup>3</sup>O<sub>2</sub> formations from the HO<sub>2</sub>+ HS reaction in tropospheric

#### conditions+

Tianlei Zhang<sup>a,\*,</sup>, Chen Yang<sup>a</sup>, Xukai Feng<sup>a</sup>, Jiaxin Kang<sup>a</sup>, Liang Song<sup>a</sup>, Yousong Lu<sup>a</sup>, Zhiyin Wang<sup>a</sup>, Qiong Xu<sup>a</sup>, Wenliang Wang<sup>b,</sup>, Zhuqing Wang<sup>c,\*</sup>

<sup>a</sup> Shaanxi Province Key Laboratory of Catalytic Fundamental & Application, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China <sup>b</sup> Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China

<sup>c</sup> Shandong Provincial Key Laboratory of Ocean Environment Monitoring Technology, Shandong Academy of Sciences Institute of Oceanographic Instrumentation, Qingdao 266001, China.

| Part A | The channel of H <sub>2</sub> S + <sup>3</sup> O <sub>2</sub> formations from the HO <sub>2</sub><br>+ HS without catalyst (pS2-pS7) |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| Part B | The channel of $H_2S + {}^3O_2$ formations from the $HO_2$                                                                           |
|        | + HS with catalyst X (X = $H_2O$ ) (pS8-pS13)                                                                                        |
| Part C | The channel of $H_2S + {}^{3}O_2$ formations from the $HO_2$ +                                                                       |
|        | HS with catalyst X (X = $(H_2O)_2$ ) (pS14-pS23)                                                                                     |
| Part D | The channel of $H_2S + {}^3O_2$ formations from the $HO_2$                                                                           |
| Part D | + HS with catalyst X (X = $(H_2O)_3$ ) (pS24-pS29)                                                                                   |

# Part A The $H_2S + {}^3O_2$ formations from the $HO_2$ + HS without

### catalyst(pS2-pS7)

| Figure S1 | Geometrical parameters for the naked reaction of $HO_2$ + HS optimized at the CCSD(T)/6-311++G(3df, 2pd)//B3LYP/6-311+G(2df, 2p) level of theory                                                                                                                              | pS3 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table S1  | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), relative energies ( $\Delta E$ and<br>$\Delta(E+ZPE)/(kcal·mol-1))$ , enthalpies ( $\Delta H(298)/(kcal·mol-1)$ ), and free energies<br>( $\Delta G(298)/(kcal·mol-1)$ ) for the HO <sub>2</sub> +HS reaction <sup>a</sup> | pS4 |
| Figure S2 | Schematic energy diagram of the naked HO <sub>2</sub> +HS reaction energies                                                                                                                                                                                                   | pS5 |
| Table S2  | Rate constants (cm <sup>3</sup> ·molecules <sup>-1</sup> ·s <sup>-1</sup> ) for main reaction of the HO <sub>2</sub> + HS reaction within the temperature range of 240.0-425.0 K                                                                                              | pS6 |
|           | The predicated concentration of HS based on previous experimental and theoretical reports at 298 K                                                                                                                                                                            | pS7 |



**Figure S1** Geometrical parameters for the naked reaction of HO<sub>2</sub> + HS optimized at the CCSD(T)/6-311++G(3df,2pd)//B3LYP/6-311+G(2df,2p) level of theory

| Species            | ZPE  | S     | ΔE    | ∆H(298) | ∆G(298) | $\Delta$ (E+ZPE) |
|--------------------|------|-------|-------|---------|---------|------------------|
| $HO_2 + HS$        | 12.7 | 100.6 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IM1   | 14.4 | 73.8  | -4.7  | -3.6    | 4.4     | -3.0             |
| <sup>3</sup> IM1a  | 14.4 | 73.8  | -4.7  | -3.6    | 4.4     | -3.0             |
| <sup>3</sup> TS1   | 12.0 | 74.1  | -0.5  | -2.0    | 5.9     | -1.2             |
| <sup>3</sup> TS1a  | 12.0 | 74.2  | -0.5  | -2.0    | 5.9     | -1.2             |
| $H_2S + {}^3O_2$   | 11.8 | 99.5  | -40.9 | -41.8   | -41.5   | -41.8            |
| <sup>3</sup> TS2   | 13.9 | 69.4  | 13.5  | 13.6    | 22.9    | 14.6             |
| HSO + OH           | 11.8 | 100.3 | -30.6 | -31.5   | -31.4   | -31.5            |
| <sup>3</sup> TS3   | 13.4 | 70.8  | 26.4  | 26.2    | 35.1    | 27.1             |
| $HSOH + {}^{3}O$   | 14.1 | 94.7  | -5.8  | -4.8    | -3.1    | -4.4             |
| <sup>3</sup> TS4   | 12.4 | 69.9  | 25.2  | 23.7    | 32.8    | 24.9             |
| $H_2O_2 + {}^3S$   | 16.7 | 92.0  | -16.2 | -12.5   | -10.6   | -12.2            |
| <sup>1</sup> TS5   | 12.3 | 68.0  | 12.1  | 10.7    | 20.4    | 11.7             |
| <sup>1</sup> TS5a  | 12.3 | 68.0  | 12.2  | 10.8    | 20.5    | 11.8             |
| $H_2S + {}^1O_2$   | 11.7 | 97.3  | -10.6 | -11.6   | -10.6   | -11.6            |
| <sup>1</sup> TS6   | 13.3 | 69.1  | 35.8  | 0.1     | 35.3    | 44.7             |
| <sup>1</sup> TS6a  | 15.4 | 64.9  | 35.5  | 4.1     | 36.9    | 47.5             |
| <sup>1</sup> IMF6  | 17.5 | 76.0  | -46.7 | -43.7   | -33.3   | -45.1            |
| HSO + OH           | 11.7 | 100.3 | -30.6 | -1.9    | -31.5   | -31.5            |
| <sup>1</sup> TS7   | 13.4 | 66.8  | 13.7  | 13.3    | 23.3    | 14.4             |
| <sup>1</sup> HSOOH | 15.9 | 66.4  | -44.4 | -42.4   | -32.2   | -41.3            |
| <sup>1</sup> TS8   | 13.4 | 70.8  | 34.6  | 34.8    | 44.7    | 35.9             |
| $HSOH + {}^{1}O$   | 14.1 | 92.5  | 45.4  | 46.4    | 48.8    | 46.8             |
| <sup>1</sup> TS9   | 14.1 | 66.0  | -21.5 | -22.6   | -13.2   | 33.6             |
| $H_2O_2 + {}^1S$   | 16.7 | 92.0  | 15.0  | 18.6    | 21.1    | 18.9             |

**Table S1** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), relative energies ( $\Delta E$  and  $\Delta(E+ZPE)/(kcal·mol<sup>-1</sup>)$ ), enthalpies ( $\Delta H(298)/(kcal·mol<sup>-1</sup>)$ ), and free energies ( $\Delta G(298)/(kcal·mol<sup>-1</sup>)$ ) for the HO<sub>2</sub> + HS reaction<sup>a</sup>



Figure S2 Schematic energy diagram of the naked  $HO_2 + HS$  reaction energies (kcal·mol<sup>-1</sup>) computed at the CCSD(T)/6-311++G(3df,2pd)//B3LYP/6-311+G(2df,2p) level include zero-point energy correction.

| T/K | $k_{R1a}$ | $k_{R1b}$ | $k_{\mathrm{R1}}$ |
|-----|-----------|-----------|-------------------|
| 240 | 2.60E-11  | 2.90E-11  | 5.49E-11          |
| 250 | 2.35E-11  | 2.62E-11  | 4.98E-11          |
| 278 | 1.88E-11  | 2.09E-11  | 3.97E-11          |
| 288 | 1.76E-11  | 1.95E-11  | 3.72E-11          |
| 298 | 1.66E-11  | 1.84E-11  | 3.50E-11          |
| 308 | 1.58E-11  | 1.74E-11  | 3.32E-11          |
| 325 | 1.46E-11  | 1.61E-11  | 3.07E-11          |
| 375 | 1.24E-11  | 1.36E-11  | 2.60E-11          |
| 425 | 1.13E-11  | 1.24E-11  | 2.37E-11          |

**Table S2** Rate constants (cm<sup>3</sup>·molecules<sup>-1</sup>·s<sup>-1</sup>) for main reaction of the HO<sub>2</sub> + HS reaction within the temperature range of 240.0-425.0 K

 $k_{R1}$  is the rate constant of Channel R1;  $k_{R1a}$  is the rate constant of the process of HO<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IM1  $\rightarrow$  <sup>3</sup>TS1  $\rightarrow$  H<sub>2</sub>S + <sup>3</sup>O<sub>2</sub>; and  $k_{R1b}$  is the rate constant of the process of HO<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IM1a  $\rightarrow$  <sup>3</sup>TS1  $\rightarrow$  H<sub>2</sub>S + <sup>3</sup>O<sub>2</sub>;  $k_{R1} = k_{R1a} + k_{R1b}$ .

# The predicated concentration of HS based on previous experimental and theoretical reports at 298 K

The main source of HS radical is the reaction of H<sub>2</sub>S with OH radical<sup>[1]</sup>:

 $H_2S + OH \rightarrow H_2O + HS$  5.48E-12 (298 K)  $k_1$  (1)

The formed HS radical is mainly dispelled by the reacts with atoms or molecules, such as  $HO_2^{[2]}$ ,  $O_3^{[3]}$ ,  $O_2^{[4]}$ ,  $NO_2^{[5]}$ ,  $NO_2^{[6]}$ :

HO<sub>2</sub> + HS → 
$${}^{3}O_{2}$$
 + H<sub>2</sub>S 3.50E-11 (298 K)  $k_{2}$  (2)  
O<sub>3</sub> + HS →  ${}^{3}O_{2}$  + HSO 3.71E-12(298 K)  $k_{3}$  (3)  
O<sub>2</sub> + HS → OH + SO 4.00E-19(298 K)  $k_{4}$  (4)

NO + HS 
$$\rightarrow$$
 HSN=O 5.60E-13(298 K)  $k_5$  (5)

$$NO_2 + HS \rightarrow HSO + NO$$
 7.00E-11(298 K)  $k_6$  (6)

Assumed that the production rate and the depletion rate is comparable, the concentration of HS radical can be approximately equal to:

 $[HS] = (k_1[H_2S][OH])/(k_2[HO_2] + k_3[O_3] + k_4[O_2] + k_5[NO] + k_6[NO_2])$ 

where  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$ ,  $k_5$  and  $k_6$  are rate constants for the reactions of R1, R2, R3, R4, R5 and R6, respectively. Therefore, the concentration of HS radical is calculated as a value of **10<sup>6</sup> molecules cm<sup>-3</sup>** in the tropospheric conditon with 20% O<sub>2</sub>, 10 ppbv O<sub>3</sub>, 10ppbv NO, 10ppbv NO<sub>2</sub>,10pptv HO<sub>2</sub>, 1pptv OH and 10ppbv H<sub>2</sub>S.

#### References

- [1] G. S. Tyndall and A. R. Ravishankara, Atmos. Environ., 1991, 23, 483-527.
- [2] R. A. Stachnik and M. J. Molina, J. Phys. Chem. , 1987, 91, 4603-4606.
- [3] R. R. Friedl, W. H. Brune and J. G. Anderson, J. Phys. Chem., 1985, 89, 5505-5510.
- [4] D. J. Nesbitt and S. R. Leone, J. Chem. Phys., 1980, 72, 1722-1732.
- [5] G. Black, J. Chem. Phys., 1984, 80, 1103-1107.
- [6] R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, *Atmos. Chem. Phys.*, 2004, 4, 1461-1738.

# Part B The $H_2S$ + ${}^3O_2$ formations from the $HO_2$ + HS with

### catalyst $X (X = H_2O)$ (pS8-pS13)

| Figure S3 | The geometrical structures of the optimized transitions state,<br>intermediates, and complexes involved in water-assisted Channels<br>occurring through $H_2O\cdots HO_2 + HS$ , $HO_2\cdots H_2O + HS$ , $HS\cdots H_2O + HO_2$ and $H_2O\cdots HS + HO_2$ reactants                                                                                                                                                                                                                                                            | pS9        |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Table S3  | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), entropies (S/ (cal·mol <sup>-1</sup> ·K <sup>-1</sup> )),<br>relative energies ( $\Delta$ E and $\Delta$ (E+ZPE)/(kcal·mol <sup>-1</sup> )), enthalpies<br>( $\Delta$ H(298)/(kcal·mol <sup>-1</sup> )), and free energies ( $\Delta$ G(298)/(kcal·mol <sup>-1</sup> )) for<br>the binary complexes (H <sub>2</sub> O····HO <sub>2</sub> , HO <sub>2</sub> ····H <sub>2</sub> O, HS····H <sub>2</sub> O, HS····H <sub>2</sub> O,<br>and H <sub>2</sub> O····H <sub>2</sub> O) | pS10       |
| Table S4  | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), relative energies ( $\Delta E$ and $\Delta(E+ZPE)/(kcal·mol-1)$ ), enthalpies ( $\Delta H(298)/(kcal·mol-1)$ ), and free energies ( $\Delta G(298)/(kcal·mol-1)$ ) for water-assisted the formations of H <sub>2</sub> S + <sup>3</sup> O <sub>2</sub> from the HO <sub>2</sub> + HS reaction                                                                                                                                                                                 | pS11       |
| Table S5  | Rate constants (cm <sup>3</sup> ·molecules <sup>-1</sup> ·s <sup>-1</sup> ) for the $H_2S + {}^{3}O_2$ formations from<br>the $HO_2 + HS$ reaction occurring through water-assisted Channels<br>RW1a, RW1b, RW2 and RW3 within the temperature range of 240.0-<br>425.0 K                                                                                                                                                                                                                                                        | pS (12-13) |



**Figure S3** The geometrical structures of the optimized transitions state, intermediates, and complexes involved in water-assisted channels occurring through  $H_2O\cdots HO_2 + HS$ ,  $HO_2\cdots H_2O + HS$ ,  $HS\cdots H_2O + HO_2$  and  $H_2O\cdots HS + HO_2$  reactants

**Table S3** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), entropies (S/ (cal·mol<sup>-1</sup>·K<sup>-1</sup>)), relative energies ( $\Delta$ E and  $\Delta$ (E+ZPE)/(kcal·mol<sup>-1</sup>)), enthalpies ( $\Delta$ H(298)/(kcal·mol<sup>-1</sup>)), and free energies ( $\Delta$ G(298)/(kcal·mol<sup>-1</sup>)) for the binary complexes (H<sub>2</sub>O···HO<sub>2</sub>, HO<sub>2</sub>···H<sub>2</sub>O, HS···H<sub>2</sub>O, HS···H<sub>2</sub>O, and H<sub>2</sub>O···H<sub>2</sub>O)

| Species                   | ZPE  | S    | ΔE   | ΔH   | ΔG  | $\Delta$ (E+ZPE) |
|---------------------------|------|------|------|------|-----|------------------|
| $H_2O + HO_2$             | 22.3 | 99.7 | 0.0  | 0.0  | 0.0 | 0.0              |
| $H_2O$ ···HO <sub>2</sub> | 24.8 | 72.6 | -9.4 | -7.6 | 0.5 | -6.9             |
| $HO_2$ ···H_2O            | 23.9 | 80.0 | -3.5 | -2.0 | 3.9 | -1.9             |
| $H_2O + HS$               | 17.2 | 91.0 | 0.0  | 0.0  | 0.0 | 0.0              |
| H <sub>2</sub> O…HS       | 18.6 | 72.7 | -3.0 | -1.9 | 3.6 | -1.6             |
| $HS \cdots H_2O$          | 18.2 | 75.9 | -2.7 | -1.8 | 2.7 | -1.7             |

| Species                               | ZPE  | ΔE    | ∆H(298) | ∆G(298) | $\Delta$ (E+ZPE) |
|---------------------------------------|------|-------|---------|---------|------------------|
| $H_2O \bullet \bullet HO_2 + HS$      | 28.6 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMW1                     | 29.5 | -3.4  | -4.4    | 1.1     | -2.6             |
| <sup>3</sup> IMW1a                    | 29.5 | -3.4  | -4.5    | 1.3     | -2.6             |
| <sup>3</sup> TSW1                     | 29.6 | -3.3  | -5.0    | 3.8     | -2.3             |
| <sup>3</sup> TSW1a                    | 29.6 | -3.2  | -4.9    | 3.9     | -2.2             |
| <sup>3</sup> IMW2                     | 30.4 | 4.4   | -4.1    | 5.7     | -3.3             |
| <sup>3</sup> IMW2a                    | 30.4 | 4.3   | -4.2    | 5.6     | -3.4             |
| <sup>3</sup> TSW2                     | 27.3 | 17.1  | 4.7     | 16.3    | 6.3              |
| <sup>3</sup> TSW2a                    | 27.3 | 17.0  | 4.6     | 16.1    | 6.2              |
| <sup>3</sup> IMW3                     | 29.7 | -3.8  | -2.7    | 3.3     | -2.7             |
| <sup>3</sup> IMW3a                    | 29.7 | -3.8  | 36.9    | 3.3     | -2.7             |
| <sup>3</sup> TSW3                     | 29.3 | -3.2  | -37.9   | 5.5     | -2.5             |
| <sup>3</sup> TSW3a                    | 28.6 | -2.4  | -2.7    | 5.1     | -2.4             |
| <sup>3</sup> IMW4                     | 28.6 | -2.9  | -2.9    | 4.0     | -3.0             |
| <sup>3</sup> IMW4a                    | 28.6 | -3.0  | -2.9    | 3.9     | -3.0             |
| <sup>3</sup> TSW4                     | 26.1 | 5.7   | 2.5     | 11.2    | 3.1              |
| <sup>3</sup> TSW4a                    | 25.9 | 5.7   | 2.5     | 10.7    | 2.9              |
| $H_2O \bullet \bullet H_2S + {}^3O_2$ | 26.5 | -34.2 | -35.6   | -37.8   | -36.3            |
| $HO_2 \bullet \bullet H_2O + HS$      | 28.4 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMW5                     | 28.8 | -6.9  | -5.9    | -1.3    | -4.1             |
| <sup>3</sup> IMW5a                    | 28.8 | -6.9  | -5.9    | -1.2    | -4.2             |
| <sup>3</sup> TSW5                     | 25.6 | 0.5   | -2.0    | 3.3     | 0.0              |
| <sup>3</sup> TSW5a                    | 25.6 | 0.5   | -2.0    | 3.3     | -0.1             |
| <sup>3</sup> IMFW5                    | 26.0 | -40.1 | -40.3   | -43.6   | -40.3            |
| <sup>3</sup> IMFW5a                   | 27.1 | -39.6 | -39.7   | -38.1   | -40.6            |
| $H_2O^{+3}O_2 + H_2S$                 | 25.2 | -38.8 | -41.2   | -49.1   | -39.8            |
| $HO_2 + HS \bullet \bullet H_2O$      | 27.1 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> TSW6                     | 26.2 | 6.1   | 2.7     | 14.7    | 5.1              |
| <sup>3</sup> TSW6a                    | 26.0 | 6.5   | 4.1     | 15.7    | 5.5              |
| $H_2S \bullet \bullet H_2O + {}^3O_2$ | 27.3 | -40.5 | -41.0   | -37.7   | -40.3            |
| $H_2O \bullet \bullet HS + HO_2$      | 27.5 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMW7                     | 29.6 | -10.3 | -8.9    | 1.8     | -8.2             |
| <sup>3</sup> TSW7                     | 25.9 | -0.2  | -2.7    | 7.5     | -1.8             |
| $H_2O \bullet \bullet H_2S + {}^3O_2$ | 26.5 | -40.7 | -41.4   | -40.9   | -41.6            |

**Table S4** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), relative energies ( $\Delta E$  and  $\Delta(E+ZPE)/(kcal·mol<sup>-1</sup>)$ ), enthalpies ( $\Delta H(298)/(kcal·mol<sup>-1</sup>)$ ), and free energies ( $\Delta G(298)/(kcal·mol<sup>-1</sup>)$ ) for water-assisted the formation of H<sub>2</sub>S + <sup>3</sup>O<sub>2</sub> from the HO<sub>2</sub> + HS reaction<sup>a</sup>

|             | -              |                |                |                    |                   |                    |                   |
|-------------|----------------|----------------|----------------|--------------------|-------------------|--------------------|-------------------|
| <i>T</i> /K | Keq(IMW1)      | Keq(IMW1a)     | $k_{\rm TSW1}$ | k <sub>TSW1a</sub> | k <sub>TSW2</sub> | k <sub>TSW2a</sub> | k <sub>RW1a</sub> |
| 240         | 4.51E-24       | 4.51E-24       | 2.88E-18       | 2.49E-18           | 2.53E+04          | 3.77E+04           | 5.37E-18          |
| 250         | 5.11E-24       | 5.11E-24       | 3.29E-18       | 3.09E-18           | 4.32E+04          | 6.38E+04           | 6.38E-18          |
| 278         | 7.14E-24       | 7.14E-24       | 4.68E-18       | 5.37E-18           | 1.73E+05          | 2.49E+05           | 1.01E-17          |
| 288         | 8.00E-24       | 8.00E-24       | 5.27E-18       | 6.44E-18           | 2.73E+05          | 3.88E+05           | 1.17E-17          |
| 298         | 8.93E-24       | 8.93E-24       | 5.91E-18       | 7.66E-18           | 4.21E+05          | 5.93E+05           | 1.36E-17          |
| 308         | 9.95E-24       | 9.95E-24       | 6.60E-18       | 9.05E-18           | 6.35E+05          | 8.88E+05           | 1.57E-17          |
| 325         | 1.19E-23       | 1.19E-23       | 7.93E-18       | 1.19E-17           | 1.22E+06          | 1.69E+06           | 1.98E-17          |
| 375         | 1.92E-23       | 1.92E-23       | 1.29E-17       | 2.41E-17           | 6.26E+06          | 8.37E+06           | 3.70E-17          |
| 425         | 2.96E-23       | 2.96E-23       | 2.00E-17       | 4.43E-17           | 2.27E+07          | 2.97E+07           | 6.43E-17          |
| <i>T</i> /K | Keq(IMW3)      | Keq(IMW3a)     | $k_{\rm TSW3}$ | k <sub>TSW3a</sub> | $k_{ m TSW4}$     | $k_{ m TSW4a}$     | $k_{\rm RW1b}$    |
| 240         | 6.51E-12       | 2.27E-13       | 3.44E-08       | 2.00E-08           | 1.44E+12          | 1.74E+12           | 5.44E-08          |
| 250         | 1.87E-12       | 6.93E-14       | 2.01E-08       | 1.16E-08           | 1.45E+12          | 1.80E+12           | 3.17E-08          |
| 278         | 9.79E-14       | 4.18E-15       | 5.90E-09       | 3.32E-09           | 1.47E+12          | 1.97E+12           | 9.22E-09          |
| 288         | 4.02E-14       | 1.78E-15       | 4.13E-09       | 2.30E-09           | 1.48E+12          | 2.02E+12           | 6.43E-09          |
| 298         | 1.77E-14       | 8.19E-16       | 2.99E-09       | 1.66E-09           | 1.49E+12          | 2.07E+12           | 4.65E-09          |
| 308         | 8.28E-15       | 3.98E-16       | 2.23E-09       | 1.23E-09           | 1.50E+12          | 2.11E+12           | 3.46E-09          |
| 325         | 2.59E-15       | 1.31E-16       | 1.44E-09       | 7.85E-10           | 1.51E+12          | 2.18E+12           | 2.23E-09          |
| 375         | 1.70E-16       | 9.81E-18       | 5.47E-10       | 2.91E-10           | 1.54E+12          | 2.35E+12           | 8.38E-10          |
| 425         | 2.32E-17       | 1.48E-18       | 2.86E-10       | 1.50E-10           | 1.57E+12          | 2.47E+12           | 4.36E-10          |
| <i>T</i> /K | $k_{\rm TSW5}$ | $k_{ m TSW5a}$ | $k_{\rm RW2}$  | $k_{\rm TSW6}$     | $k_{ m TSW6}$     | $k_{\rm RW3}$      | $k_{ m RW4}$      |
| 240         | 4.73E-09       | 4.77E-09       | 9.50E-09       | 5.44E-18           | 9.39E-19          | 6.38E-18           | 7.54E-14          |
| 250         | 3.97E-09       | 4.00E-09       | 7.97E-09       | 6.49E-18           | 1.19E-18          | 7.68E-18           | 7.26E-14          |
| 278         | 2.70E-09       | 2.72E-09       | 5.42E-09       | 1.03E-17           | 2.23E-18          | 1.25E-17           | 6.66E-14          |
| 288         | 2.42E-09       | 2.44E-09       | 4.86E-09       | 1.20E-17           | 2.76E-18          | 1.48E-17           | 6.51E-14          |
| 298         | 2.20E-09       | 2.22E-09       | 4.42E-09       | 1.40E-17           | 3.38E-18          | 1.73E-17           | 6.37E-14          |
| 308         | 2.03E-09       | 2.04E-09       | 4.07E-09       | 1.61E-17           | 4.12E-18          | 2.02E-17           | 6.26E-14          |
| 325         | 1.80E-09       | 1.81E-09       | 3.61E-09       | 2.04E-17           | 5.67E-18          | 2.60E-17           | 6.10E-14          |
| 375         | 1.41E-09       | 1.42E-09       | 2.83E-09       | 3.76E-17           | 1.31E-17          | 5.08E-17           | 5.84E-14          |
| 425         | 1 25E-09       | 1 26E-09       | 2.51E-09       | 6 37E-17           | 2.68E-17          | 9 05E-17           | 5 79E-14          |

**Table S5** Rate constants (cm<sup>3</sup>·molecules<sup>-1</sup>·s<sup>-1</sup>) for the  $H_2S + {}^{3}O_2$  formations from the  $HO_2 + HS$  reaction occurring through water-assisted Channels RW1a, RW1b, RW2 and RW3 within the temperature range of 240.0-425.0 K

Keq(IMW1) and Keq(IMW1a) is the equilibrium constant for the process of  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1$  and  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1a$ , respectively; Keq(IMW3) and Keq(IMW3a) is the equilibrium constant for the process of  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1$  and  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1a$ , respectively;  $k_{TSW1}$  and  $k_{TSW1a}$  is the rate constant for the process of  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1 \rightarrow {}^{3}TSW1 \rightarrow {}^{3}IMW2$  and  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1a \rightarrow {}^{3}TSW1a \rightarrow {}^{3}IMW2$  and  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW1a \rightarrow {}^{3}TSW1a \rightarrow {}^{3}IMW2a$ , respectively;  $k_{TSW2}$  and  $k_{TSW2a}$  is the rate constant for the process of  ${}^{3}IMW2a \rightarrow {}^{3}TSW2a \rightarrow H_2O\cdots H_2S + {}^{3}O_2$ , respectively;  $k_{TSW3}$  and  $k_{TSW3a}$  is the rate constant for the process of  $H_2O\cdots HO_2 + HS \rightarrow {}^{3}IMW3a \rightarrow {}^{3}TSW3a \rightarrow {}^{3}IMW4a$ , respectively;  $k_{TSW4}$  and  $k_{TSW4a}$  is the rate constant for the process of  ${}^{3}IMW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW5a \rightarrow {}^{3}IMFW5a$  and  $k_{TSW5a}$  is the rate constant for the process of  ${}^{3}IMW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW5a \rightarrow {}^{3}IMFW5a \rightarrow {}^{3}IMFW5a \rightarrow {}^{3}IMFW5a \rightarrow {}^{3}IMFW5a$  and  $k_{TSW5a}$  is the rate constant for the process of  ${}^{3}IMW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW4a \rightarrow {}^{3}TSW5a \rightarrow {}^{3}IMFW5a \rightarrow {}^{3}IMF$ 

HO<sub>2</sub>•••H<sub>2</sub>O + HS → <sup>3</sup>IMW5a → <sup>3</sup>TSW5a → <sup>3</sup>IMFW5a → H<sub>2</sub>O + <sup>3</sup>O<sub>2</sub> + H<sub>2</sub>S, respectively;  $k_{TSW6}$  and  $k_{TSW6a}$  is the rate constant for the process of HS•••H<sub>2</sub>O + HO<sub>2</sub> → <sup>3</sup>TSW6 → H<sub>2</sub>S•••H<sub>2</sub>O + <sup>3</sup>O<sub>2</sub> and HS•••H<sub>2</sub>O + HO<sub>2</sub> → <sup>3</sup>TSW6a → H<sub>2</sub>S•••H<sub>2</sub>O + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RW1a}$ ,  $k_{RW1b}$ ,  $k_{RW2}$ ,  $k_{RW3}$ , and  $k_{RW4}$  is the rate constant of water dimer- assisted Channels RW1a, RWW1b, RWW2, RWW3 and RWW4. ( $1/k_{RW1a} = 1/(k_{TSW1} + k_{TSW1a}) + 1/(k_{TSW2} + k_{TSW2a})$ ,  $1/k_{RW1b} = 1/(k_{TSW3} + k_{TSW3a}) + 1/(k_{TSW4} + k_{TSW4a})$ ,  $k_{RW2} = k_{TSW5} + k_{TSW5a}$ ,  $k_{RW3a} = k_{TSW6} + k_{TSW6a}$ )

# Part C The $H_2S + {}^3O_2$ formations from the $HO_2 + HS$ with

| Figure S4 | The geometrical structures of the optimized transitions state,<br>intermediates, and complexes involving water dimer-assisted Channels<br>occurring through HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> (HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> a, HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> b) + HS<br>and HS···(H <sub>2</sub> O) <sub>2</sub> (HS···(H <sub>2</sub> O) <sub>2</sub> a) + HO <sub>2</sub>                                                                                                                                                                     | p815       |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure S5 | Schematic energy diagrams of water dimer-assisted the channel of $H_2S$ + ${}^{3}O_2$ formations occurring through $HO_2 \cdots (H_2O)_2 b$ + HS                                                                                                                                                                                                                                                                                                                                                                                                                                                            | p816       |
| Table S6  | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), entropies (S/ (cal·mol <sup>-1</sup> ·K <sup>-1</sup> )),<br>relative energies ( $\Delta E$ and $\Delta(E+ZPE)/(kcal·mol-1)$ ), enthalpies<br>( $\Delta H(298)/(kcal·mol-1)$ ), and free energies ( $\Delta G(298)/(kcal·mol-1)$ ) for the<br>trinary complexes (HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> , HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> a, HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> b,<br>HS···(H <sub>2</sub> O) <sub>2</sub> , HS···(H <sub>2</sub> O) <sub>2</sub> a and (H <sub>2</sub> O) <sub>2</sub> ) | pS17       |
| Table S7  | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), relative energies ( $\Delta E$ and $\Delta(E+ZPE)/(kcal·mol-1))$ , enthalpies ( $\Delta H(298)/(kcal·mol-1))$ , and free energies ( $\Delta G(298)/(kcal·mol-1))$ ) for the HO <sub>2</sub> +HS reaction with water dimer                                                                                                                                                                                                                                                                                                                                | pS18       |
| Table S8  | Equilibrium Constants and concentration of water dimer-assisted $(H_2O)_2$ within the temperature range of 240.0-425.0 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pS19       |
| Table S9  | Rate constants (cm <sup>3</sup> ·molecules <sup>-1</sup> ·s <sup>-1</sup> ) for the $H_2S + {}^{3}O_2$ formations from the $HO_2 + HS$ reaction occurring through water dimer-assisted Channels RWW1-RWW4 within the temperature range of 240.0-425.0 K                                                                                                                                                                                                                                                                                                                                                     | pS (20-21) |
| Table S10 | Effective Rate constants (cm <sup>3</sup> ·molecules <sup>-1</sup> ·s <sup>-1</sup> ) for the $H_2S + {}^{3}O_2$ formations from the HO <sub>2</sub> + HS reaction occurring through water dimerassisted Channels RWW1, RWW2 RWW3 and RWW4 within the temperature range of 240.0-425.0 K                                                                                                                                                                                                                                                                                                                    | pS (22-23) |

# catalyst X (X = (H<sub>2</sub>O)<sub>2</sub>) (pS14-pS23)



**Figure S4** The geometrical structures of the optimized transitions state, intermediates, and complexes involving water dimer-assisted Channels occurring through HO<sub>2</sub>…(H<sub>2</sub>O)<sub>2</sub> (HO<sub>2</sub>…(H<sub>2</sub>O)<sub>2</sub>a, HO<sub>2</sub>…(H<sub>2</sub>O)<sub>2</sub>b) + HS and HS…(H<sub>2</sub>O)<sub>2</sub> (HS…(H<sub>2</sub>O)<sub>2</sub>a) + HO<sub>2</sub>



Figure S5 Schematic energy diagrams of water dimer-assisted the channel of  $H_2S + {}^{3}O_2$ formations occurring through  $HO_2 \cdots (H_2O)_2b + HS$ 

**Table S6** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), entropies (S/ (cal·mol<sup>-1</sup>·K<sup>-1</sup>)), relative energies ( $\Delta E$  and  $\Delta(E+ZPE)/(kcal·mol<sup>-1</sup>)$ ), enthalpies ( $\Delta H(298)/(kcal·mol<sup>-1</sup>)$ ), and free energies ( $\Delta G(298)/(kcal·mol<sup>-1</sup>)$ ) for the trinary complexes (HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub>, HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub>a, HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub>b, HS···(H<sub>2</sub>O)<sub>2</sub>, HS···(H<sub>2</sub>O)<sub>2</sub>a and (H<sub>2</sub>O)<sub>2</sub>)

| (2-)23                                | ( 2 - )2 | $(2^{-})2)$ |               |               |               |                     |
|---------------------------------------|----------|-------------|---------------|---------------|---------------|---------------------|
| Species                               | ZPE      | S           | $\triangle E$ | $\triangle H$ | $\triangle G$ | $\triangle$ (E+ZPE) |
| $H_2O + H_2O$                         | 26.8     | 90.2        | 0.0           | 0.0           | 0.0           | 0.0                 |
| $(H_2O)_2$                            | 29.0     | 69.4        | -5.3          | -3.6          | 22.7          | -3.1                |
| $(H_2O)_2 + HO_2$                     | 37.9     | 124.0       | 0.0           | 0.0           | 0.0           | 0.0                 |
| $HO_2$ ···· $(H_2O)_2$                | 41.2     | 83.6        | -15.8         | -13.9         | -21.9         | -12.6               |
| HO <sub>2</sub> (H2O) <sub>2</sub> a  | 41.2     | 83.6        | -15.8         | -13.9         | -21.9         | -12.6               |
| HO <sub>2</sub> (H2O) <sub>2</sub> b  | 39.5     | 101.0       | -4.7          | -3.2          | -16.4         | -3.2                |
| $(H_2O)_2 + HS$                       | 32.8     | 115.3       | 0.0           | 0.0           | 0.0           | 0.0                 |
| $HS^{\dots}(H_2O)_2$                  | 34.7     | 85.9        | -6.2          | -5.0          | -16.4         | -4.3                |
| HS… (H <sub>2</sub> O) <sub>2</sub> a | 34.7     | 85.8        | -6.2          | -5.0          | -16.4         | -4.3                |

| Species                                             | ZPE  | ΔE    | ∆H(298) | ∆G(298) | $\Delta$ (E+ZPE) |
|-----------------------------------------------------|------|-------|---------|---------|------------------|
| $HO_2 \bullet \bullet \bullet (H_2O)_2 + HS$        | 45.0 | 0.0   | 0.0     | 0.0     | 0.0              |
| $HO_2 \bullet \bullet \bullet (H_2O)_2a + HS$       | 45.0 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMWW1                                  | 45.8 | -3.7  | -2.7    | 2.8     | -2.8             |
| <sup>3</sup> IMWW1a                                 | 45.8 | -3.7  | -2.7    | 2.7     | -2.8             |
| <sup>3</sup> TSWW1                                  | 45.2 | -2.6  | -2.5    | 4.5     | -2.5             |
| <sup>3</sup> TSWW1a                                 | 45.2 | -2.6  | -2.5    | 4.5     | -2.5             |
| <sup>3</sup> IMWW2                                  | 45.6 | -3.2  | -2.4    | 3.9     | -2.7             |
| <sup>3</sup> IMWW2a                                 | 45.6 | -3.2  | -2.4    | 3.9     | -2.7             |
| <sup>3</sup> TSWW2                                  | 42.5 | 10.9  | 9.4     | 15.3    | 8.9              |
| <sup>3</sup> TSWW2a                                 | 42.4 | 11.0  | 8.8     | 14.8    | 8.3              |
| <sup>3</sup> IMWW3                                  | 46.0 | -2.5  | -1.4    | 4.6     | -1.5             |
| <sup>3</sup> IMWW3a                                 | 46.0 | -2.5  | -1.4    | 4.6     | -1.5             |
| <sup>3</sup> TSWW3                                  | 44.6 | 1.9   | 1.8     | 8.3     | 1.6              |
| <sup>3</sup> TSWW3a                                 | 44.6 | 1.9   | 1.8     | 8.3     | 1.6              |
| <sup>3</sup> IMWW4                                  | 45.5 | -3.8  | 0.3     | 6.9     | -3.6             |
| <sup>3</sup> IMWW4a                                 | 45.5 | -3.8  | 0.3     | 6.9     | -3.6             |
| <sup>3</sup> TSWW4                                  | 41.8 | 9.4   | 6.1     | 13.3    | 6.0              |
| <sup>3</sup> TSWW4a                                 | 41.7 | 9.6   | 6.4     | 13.4    | 6.2              |
| $H_2S \cdots (H_2O)_2 + {}^3O_2$                    | 43.3 | -29.1 | -30.1   | -32.1   | -30.9            |
| $H_2S \bullet \bullet \bullet (H_2O)_2 a + {}^3O_2$ | 43.3 | -29.1 | -30.2   | -32.1   | -31.0            |
| $HS \bullet \bullet \bullet (H_2O)_2 + HO_2$        | 43.6 | 0.0   | 0.0     | 0.0     | 0.0              |
| $HS \bullet \bullet \bullet (H_2O)_2 a + HO_2$      | 43.6 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMWW5                                  | 45.0 | 1.4   | -4.7    | -3.3    | -3.3             |
| <sup>3</sup> IMWW5a                                 | 45.0 | 1.4   | -4.9    | -3.4    | -3.4             |
| <sup>3</sup> TSWW5                                  | 40.5 | -3.1  | 14.1    | 9.3     | 11.1             |
| <sup>3</sup> TSWW5a                                 | 41.5 | -2.0  | 8.3     | 4.6     | 6.3              |
| $H_2S \bullet \bullet \bullet (H_2O)_2 + {}^3O_2$   | 43.3 | -0.3  | -38.3   | -38.9   | -39.0            |
| $H_2S \bullet \bullet \bullet (H_2O)_2 a + {}^3O_2$ | 43.3 | -0.3  | -38.8   | -39.0   | -39.1            |
| $HO_2 \bullet \bullet \bullet (H_2O)_2 b + HS$      | 43.3 | 0.0   | 0.0     | 0.0     | 0.0              |
| <sup>3</sup> IMWW6                                  | 43.9 | -2.5  | -2.1    | 5.4     | -1.8             |
| <sup>3</sup> TSWW6                                  | 41.2 | 2.8   | -0.5    | 4.9     | 0.8              |
| <sup>3</sup> IMFWW6                                 | 43.2 | -43.3 | -43.3   | -36.3   | -43.3            |
| $H_2S \cdots (H_2O)_2 + {}^3O_2$                    | 42.9 | -42.3 | -43.3   | -40.1   | -42.7            |

**Table S7** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), relative energies ( $\Delta E$  and  $\Delta(E+ZPE)/(kcal·mol<sup>-1</sup>)$ ), enthalpies ( $\Delta H(298)/(kcal·mol<sup>-1</sup>)$ ), and free energies ( $\Delta G(298)/(kcal·mol<sup>-1</sup>)$ ) for the HO<sub>2</sub> + HS with two water molecule reaction

| 2.0.0 .20.0 11                      |                    |                                       |                                    |  |
|-------------------------------------|--------------------|---------------------------------------|------------------------------------|--|
| T/K                                 | [H <sub>2</sub> O] | $Keq((H_2O)_2)$                       | [(H <sub>2</sub> O) <sub>2</sub> ] |  |
| 240                                 | 8.29E+15           | 4.36E-22                              | 3.00E+10                           |  |
| 250                                 | 2.21E+16           | 3.34E-22                              | 1.63E+11                           |  |
| 278                                 | 2.25E+17           | 1.78E-22                              | 8.99E+12                           |  |
| 288                                 | 4.25E+17           | 1.47E-22                              | 2.65E+13                           |  |
| 298                                 | 7.64E+17           | 1.23E-22                              | 7.18E+13                           |  |
| 308                                 | 1.31E+18           | 1.05E-22                              | 1.79E+14                           |  |
| 325                                 | 3.04E+18           | 8.15E-23                              | 7.54E+14                           |  |
| 375                                 | 2.12E+19           | 4.61E-23                              | 2.07E+16                           |  |
| 425                                 | 8.56E+19           | 3.09E-23                              | 2.26E+17                           |  |
| [(H <sub>2</sub> O) <sub>2</sub> ]= | Kec                | Keq((H <sub>2</sub> O) <sub>2</sub> ) |                                    |  |

**Table S8** Equilibrium Constants and concentration of water dimer within the temperature range of 240.0-425.0 K

| T/K                 | Keq(IMWW1)         | Keq(IMWW1a)     | $k_{\rm TSWW1}$ | k <sub>TSWW1</sub> a | k <sub>TSWW2</sub>  | k <sub>TSWW2a</sub> |
|---------------------|--------------------|-----------------|-----------------|----------------------|---------------------|---------------------|
| 240                 | 4.20E-26           | 5.24E-26        | 2.63E-20        | 8.45E-20             | 6.75E+02            | 2.26E+02            |
| 250                 | 4.63E-26           | 5.78E-26        | 5.14E-20        | 2.14E-19             | 1.77E+03            | 6.27E+02            |
| 278                 | 5.52E-26           | 6.89E-26        | 3.32E-19        | 1.26E-18             | 1.85E+04            | 7.46E+03            |
| 288                 | 6.01E-26           | 7.50E-26        | 9.76E-19        | 2.35E-18             | 3.84E+04            | 1.61E+04            |
| 298                 | 6.37E-26           | 7.95E-25        | 1.92E-18        | 5.11E-18             | 7.58E+04            | 3.31E+04            |
| 308                 | 6.80E-26           | 8.48E-25        | 4.22E-18        | 7.05E-18             | 1.44E+05            | 6.51E+04            |
| 325                 | 7.30E-26           | 9.11E-25        | 8.27E-18        | 1.75E-17             | 3.90E+05            | 1.87E+05            |
| 375                 | 9.37E-26           | 1.17E-24        | 9.32E-18        | 2.34E-17             | 4.41E+06            | 2.41E+06            |
| 425                 | 1.04E-25           | 1.30E-24        | 5.21E-17        | 7.04E-17             | 2.86E+07            | 1.73E+07            |
| $k_{\rm RWW1}$      | k <sub>RWW1a</sub> | Keq(IMWW3)      | Keq(IMWW3a)     | k <sub>TSWW3</sub>   | k <sub>TSWW3a</sub> | $k_{ m TSWW4}$      |
| 2.63E-20            | 8.45E-20           | 1.22E-23        | 1.23E-23        | 7.26E-17             | 7.17E-17            | 3.10E+08            |
| 5.14E-20            | 2.14E-19           | 1.30E-23        | 1.31E-23        | 9.01E-17             | 8.91E-17            | 3.95E+08            |
| 3.32E-19            | 1.26E-18           | 1.48E-23        | 1.48E-23        | 1.56E-16             | 1.54E-16            | 7.53E+08            |
| 9.76E-19            | 2.35E-18           | 1.58E-23        | 1.58E-23        | 1.86E-16             | 1.84E-16            | 9.38E+08            |
| 1.92E-18            | 5.11E-18           | 1.65E-23        | 1.66E-23        | 2.21E-16             | 2.18E-16            | 1.16E+09            |
| 4.22E-18            | 7.05E-18           | 1.73E-23        | 1.74E-23        | 2.60E-16             | 2.57E-16            | 1.43E+09            |
| 8.27E-18            | 1.75E-17           | 1.83E-23        | 1.84E-23        | 3.37E-16             | 3.33E-16            | 2.01E+09            |
| 9.32E-18            | 2.34E-17           | 2.24E-23        | 2.25E-23        | 6.59E-16             | 6.52E-16            | 4.93E+09            |
| 5.21E-17            | 7.04E-17           | 2.44E-23        | 2.45E-23        | 1.16E-15             | 1.14E-15            | 1.05E+10            |
| k <sub>TSWW4a</sub> | $k_{\rm RWW2}$     | $k_{\rm RWW2a}$ | $k_{\rm RWW3}$  | k <sub>RWW3a</sub>   | $k_{\rm RWW4}$      |                     |
| 3.31E+08            | 7.26E-17           | 7.17E-17        | 4.01E-22        | 3.83E-22             | 4.61E-15            |                     |
| 4.24E+08            | 9.01E-17           | 8.91E-17        | 4.60E-22        | 4.15E-22             | 4.41E-15            |                     |
| 8.25E+08            | 1.56E-16           | 1.54E-16        | 7.75E-22        | 6.03E-22             | 4.04E-15            |                     |
| 1.03E+09            | 1.86E-16           | 1.84E-16        | 9.68E-22        | 7.19E-22             | 3.96E-15            |                     |
| 1.29E+09            | 2.21E-16           | 2.18E-16        | 1.23E-21        | 8.71E-22             | 3.89E-15            |                     |
| 1.59E+09            | 2.60E-16           | 2.57E-16        | 1.58E-21        | 1.07E-21             | 3.85E-15            |                     |
| 2.24E+09            | 3.37E-16           | 3.33E-16        | 2.45E-21        | 1.55E-21             | 3.79E-15            |                     |
| 5.51E+09            | 6.59E-16           | 6.52E-16        | 9.26E-21        | 4.86E-21             | 3.77E-15            |                     |
| 1 18E+10            | 1 16E-15           | 1 14E-15        | 3 24E-20        | 1 45E-20             | 3 88E-15            |                     |

**Table S9** Rate constants (cm<sup>3</sup>·molecules<sup>-1</sup>·s<sup>-1</sup>) for the  $H_2S + {}^{3}O_2$  formations from the  $HO_2$ + HS reaction occurring through water dimer-assisted Channels RWW1-RWW4 within the temperature range of 240.0-425.0 K

Keq(IMWW1) and Keq(IMWW1a) is the equilibrium constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMW1 and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMW1a respectively; Keq(IMWW3) and Keq(IMWW3a) is the equilibrium constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMW3 and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMW3a respectively;  $k_{TSWW1}$  and  $k_{TSWW1a}$  is the rate constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW1  $\rightarrow$  <sup>3</sup>TSWW1  $\rightarrow$  <sup>3</sup>IMWW2 and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW1a  $\rightarrow$  <sup>3</sup>TSWW1a  $\rightarrow$  <sup>3</sup>IMWW2a, respectively;  $k_{TSWW2}$  and  $k_{TSWW2a}$  is the rate constant for the process of <sup>3</sup>IMWW2  $\rightarrow$  <sup>3</sup>TSWW2  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and <sup>3</sup>IMWW2a  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$ H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RWW1}$  and  $k_{RWW1a}$  is the rate constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW2a  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$  <sup>3</sup>IMWW1  $\rightarrow$  <sup>3</sup>TSWW1  $\rightarrow$  <sup>3</sup>IMWW2  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW1a  $\rightarrow$  <sup>3</sup>TSWW1  $\rightarrow$  <sup>3</sup>IMWW2a  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW1a  $\rightarrow$  <sup>3</sup>TSWW1a  $\rightarrow$  <sup>3</sup>IMWW2a  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW1a  $\rightarrow$  <sup>3</sup>TSWW1a  $\rightarrow$  <sup>3</sup>IMWW2a  $\rightarrow$  <sup>3</sup>TSWW2a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{TSWW3}$  and  $k_{TSWW3a}$  is the rate constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW3  $\rightarrow$  <sup>3</sup>TSWW3  $\rightarrow$  <sup>3</sup>IMWW4 and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW3a  $\rightarrow$  <sup>3</sup>TSWW3a  $\rightarrow$  <sup>3</sup>IMWW4a, respectively;  $k_{TSWW4}$  and  $k_{TSWW4a}$  is the rate constant for the process of <sup>3</sup>IMWW4  $\rightarrow$  <sup>3</sup>TSWW4  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and <sup>3</sup>IMWW4a  $\rightarrow$  <sup>3</sup>TSWW4a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RWW2}$  and  $k_{RWW2a}$  is the rate constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW3  $\rightarrow$  <sup>3</sup>TSWW3  $\rightarrow$  <sup>3</sup>TSWW4  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW3a  $\rightarrow$  <sup>3</sup>TSWW3a  $\rightarrow$  <sup>3</sup>IMWW4a  $\rightarrow$  <sup>3</sup>TSWW4a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub>a + HS  $\rightarrow$  <sup>3</sup>IMWW3a  $\rightarrow$  <sup>3</sup>TSWW3a  $\rightarrow$  <sup>3</sup>IMWW4a  $\rightarrow$  <sup>3</sup>TSWW4a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RWW3}$  and  $k_{RWW3a}$  is the rate constant for the process of HS•••(H<sub>2</sub>O)<sub>2</sub> + HO<sub>2</sub>  $\rightarrow$  <sup>3</sup>IMWW5a  $\rightarrow$  <sup>3</sup>TSWW5a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RWW3}$  and  $k_{RWW3a}$  is the rate constant for the process of HS•••(H<sub>2</sub>O)<sub>2</sub> + HO<sub>2</sub>  $\rightarrow$  <sup>3</sup>IMWW5a  $\rightarrow$  <sup>3</sup>TSWW5a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a + <sup>3</sup>O<sub>2</sub>, respectively;  $k_{RWW4}$  is the rate constant of water dimerassisted Channels RWW4. ( $1/k_{RWW1} = 1/k_{TSWW1} + 1/k_{TSWW2}$ ,  $1/k_{RWW1a} = 1/k_{TSWW1a} + 1/k_{TSWW2a}$ ,  $1/k_{RWW2a} = 1/k_{TSWW3a} + 1/k_{TSWW4a}$ ,  $1/k_{RWW2a} = 1/k_{TSWW4a}$ )

| T/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [(H <sub>2</sub> O) <sub>2</sub> ]                                                                                                                                                                                                                                                                                          | $Keq(HO_2 \cdots (H_2O)_2)$                                                                                                                                                                                                                                                                          | $Keq(HO_2 \cdots (H_2O)_2a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $k_{\rm RWW1}$                                                                                                                                                                         | k <sub>RWW1a</sub>                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.00E+10                                                                                                                                                                                                                                                                                                                    | 2.01E-16                                                                                                                                                                                                                                                                                             | 2.04E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.63E-20                                                                                                                                                                               | 8.45E-20                                                                                                                                                        |
| 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.63E+11                                                                                                                                                                                                                                                                                                                    | 6.57E-17                                                                                                                                                                                                                                                                                             | 6.65E-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.14E-20                                                                                                                                                                               | 2.14E-19                                                                                                                                                        |
| 278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.99E+12                                                                                                                                                                                                                                                                                                                    | 4.41E-18                                                                                                                                                                                                                                                                                             | 4.46E-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.32E-19                                                                                                                                                                               | 1.26E-18                                                                                                                                                        |
| 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.65E+13                                                                                                                                                                                                                                                                                                                    | 1.91E-18                                                                                                                                                                                                                                                                                             | 1.93E-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.76E-19                                                                                                                                                                               | 2.35E-18                                                                                                                                                        |
| 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.18E+13                                                                                                                                                                                                                                                                                                                    | 8.76E-19                                                                                                                                                                                                                                                                                             | 8.86E-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.92E-18                                                                                                                                                                               | 5.11E-18                                                                                                                                                        |
| 308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.79E+14                                                                                                                                                                                                                                                                                                                    | 4.23E-19                                                                                                                                                                                                                                                                                             | 4.27E-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.22E-18                                                                                                                                                                               | 7.05E-18                                                                                                                                                        |
| 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.54E+14                                                                                                                                                                                                                                                                                                                    | 1.36E-19                                                                                                                                                                                                                                                                                             | 1.38E-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.27E-18                                                                                                                                                                               | 1.75E-17                                                                                                                                                        |
| 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.07E+16                                                                                                                                                                                                                                                                                                                    | 8.92E-21                                                                                                                                                                                                                                                                                             | 9.02E-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.32E-18                                                                                                                                                                               | 2.34E-17                                                                                                                                                        |
| 425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.26E+17                                                                                                                                                                                                                                                                                                                    | 1.13E-21                                                                                                                                                                                                                                                                                             | 1.14E-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.21E-17                                                                                                                                                                               | 7.04E-17                                                                                                                                                        |
| k' <sub>RWW1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k' <sub>RWW1a</sub>                                                                                                                                                                                                                                                                                                         | k <sub>RWW2</sub>                                                                                                                                                                                                                                                                                    | k <sub>RWW2a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | k' <sub>RWW2</sub>                                                                                                                                                                     | k' <sub>RWW2</sub>                                                                                                                                              |
| 1.59E-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.16E-25                                                                                                                                                                                                                                                                                                                    | 7.26E-17                                                                                                                                                                                                                                                                                             | 7.17E-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.38E-22                                                                                                                                                                               | 4.38E-22                                                                                                                                                        |
| 5.51E-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.32E-24                                                                                                                                                                                                                                                                                                                    | 9.01E-17                                                                                                                                                                                                                                                                                             | 8.91E-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.66E-22                                                                                                                                                                               | 9.65E-22                                                                                                                                                        |
| 1.32E-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.05E-23                                                                                                                                                                                                                                                                                                                    | 1.56E-16                                                                                                                                                                                                                                                                                             | 1.54E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.18E-21                                                                                                                                                                               | 6.18E-21                                                                                                                                                        |
| 4.94E-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.20E-22                                                                                                                                                                                                                                                                                                                    | 1.86E-16                                                                                                                                                                                                                                                                                             | 1.84E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.43E-21                                                                                                                                                                               | 9.43E-21                                                                                                                                                        |
| 1.21E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.25E-22                                                                                                                                                                                                                                                                                                                    | 2.21E-16                                                                                                                                                                                                                                                                                             | 2.18E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.39E-20                                                                                                                                                                               | 1.39E-20                                                                                                                                                        |
| 3.19E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.39E-22                                                                                                                                                                                                                                                                                                                    | 2.60E-16                                                                                                                                                                                                                                                                                             | 2.57E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.97E-20                                                                                                                                                                               | 1.96E-20                                                                                                                                                        |
| 8.49E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.82E-21                                                                                                                                                                                                                                                                                                                    | 3.37E-16                                                                                                                                                                                                                                                                                             | 3.33E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.46E-20                                                                                                                                                                               | 3.46E-20                                                                                                                                                        |
| 1.72E-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.37E-21                                                                                                                                                                                                                                                                                                                    | 6.59E-16                                                                                                                                                                                                                                                                                             | 6.52E-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.22E-19                                                                                                                                                                               | 1.22E-19                                                                                                                                                        |
| 1.33E-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.82E-20                                                                                                                                                                                                                                                                                                                    | 1.16E-15                                                                                                                                                                                                                                                                                             | 1.14E-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.96E-19                                                                                                                                                                               | 2.96E-19                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                                                                                                 |
| Keq(HS(H2O)2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Keq(HS'''(H_2O)_2a)$                                                                                                                                                                                                                                                                                                       | $k_{\rm RWW3}$                                                                                                                                                                                                                                                                                       | <i>k</i> <sub>RWW3a</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k' <sub>RWW3</sub>                                                                                                                                                                     | <i>k</i> ' <sub>RWW3a</sub>                                                                                                                                     |
| $\frac{\text{Keq(HS'''(H_2O)_2)}}{3.20\text{E-}22}$                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Keq(HS···(H <sub>2</sub> O) <sub>2</sub> a)<br>4.84E-22                                                                                                                                                                                                                                                                     | 4.01E-22                                                                                                                                                                                                                                                                                             | 3.83E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <i>k</i> ' <sub>RWW3</sub><br>3.85E-33                                                                                                                                                 | <i>k</i> ' <sub>RWW3a</sub><br>5.56E-33                                                                                                                         |
| Keq(HS(H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22                                                                                                                                                                                                                                                                                                                                                                                                                                         | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)<br>4.84E-22<br>3.29E-22                                                                                                                                                                                                                                               | <i>k</i> <sub>RWW3</sub><br>4.01E-22<br>4.60E-22                                                                                                                                                                                                                                                     | <i>к</i> <sub>RWW3a</sub><br>3.83E-22<br>4.15E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>k</i> <sub>RWW3</sub><br>3.85E-33<br>1.57E-32                                                                                                                                       | <i>k</i> <sup>2</sup> <sub>RWW3a</sub><br>5.56E-33<br>2.23E-32                                                                                                  |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23                                                                                                                                                                                                                                                                                                                                                                                                                          | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22                                                                                                                                                                                                              | <i>k</i> <sub>RWW3</sub><br>4.01E-22<br>4.60E-22<br>7.75E-22                                                                                                                                                                                                                                         | K <sub>RWW3a</sub> 3.83E-22           4.15E-22           6.03E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <i>k</i> <sub>RWW3</sub><br>3.85E-33<br>1.57E-32<br>5.18E-31                                                                                                                           | <i>k</i> <sub>Rww3a</sub><br>5.56E-33<br>2.23E-32<br>7.10E-31                                                                                                   |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23<br>5.41E-23                                                                                                                                                                                                                                                                                                                                                                                                              | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)<br>4.84E-22<br>3.29E-22<br>1.31E-22<br>9.85E-23                                                                                                                                                                                                                       | <i>k</i> <sub>RWW3</sub><br>4.01E-22<br>4.60E-22<br>7.75E-22<br>9.68E-22                                                                                                                                                                                                                             | k <sub>RWW3a</sub> 3.83E-22           4.15E-22           6.03E-22           7.19E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>k</i> <sub>RWW3</sub><br>3.85E-33<br>1.57E-32<br>5.18E-31<br>1.39E-30                                                                                                               | <i>k</i> <sub>Rww3a</sub><br>5.56E-33<br>2.23E-32<br>7.10E-31<br>1.88E-30                                                                                       |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23<br>5.41E-23<br>4.02E-23                                                                                                                                                                                                                                                                                                                                                                                                  | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)<br>4.84E-22<br>3.29E-22<br>1.31E-22<br>9.85E-23<br>7.58E-23                                                                                                                                                                                                           | <i>k</i> <sub>RWW3</sub><br>4.01E-22<br>4.60E-22<br>7.75E-22<br>9.68E-22<br>1.23E-21                                                                                                                                                                                                                 | k <sub>RWW3a</sub> 3.83E-22           4.15E-22           6.03E-22           7.19E-22           8.71E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>k</i> <sub>RWW3</sub><br>3.85E-33<br>1.57E-32<br>5.18E-31<br>1.39E-30<br>3.55E-30                                                                                                   | K <sub>RWW3a</sub> 5.56E-33           2.23E-32           7.10E-31           1.88E-30           4.74E-30                                                         |
| Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23<br>5.41E-23<br>4.02E-23<br>3.04E-23                                                                                                                                                                                                                                                                                                                                                                            | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23                                                                                                                                                     | <i>k</i> <sub>RWW3</sub><br>4.01E-22<br>4.60E-22<br>7.75E-22<br>9.68E-22<br>1.23E-21<br>1.58E-21                                                                                                                                                                                                     | $\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$ | <i>k</i> <sub>RWW3</sub><br>3.85E-33<br>1.57E-32<br>5.18E-31<br>1.39E-30<br>3.55E-30<br>8.60E-30                                                                                       | K <sub>RWW3a</sub> 5.56E-33           2.23E-32           7.10E-31           1.88E-30           4.74E-30           1.14E-29                                      |
| Keq(HS(H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23<br>5.41E-23<br>4.02E-23<br>3.04E-23<br>1.98E-23                                                                                                                                                                                                                                                                                                                                                                             | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23                                                                                                                                  | k <sub>RWW3</sub> 4.01E-22           4.60E-22           7.75E-22           9.68E-22           1.23E-21           1.58E-21           2.45E-21                                                                                                                                                         | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29                                   | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29                                   |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )           3.20E-22           2.09E-22           7.44E-23           5.41E-23           4.02E-23           3.04E-23           1.98E-23           7.04E-24                                                                                                                                                                                                                                                                                                      | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23           1.68E-23                                                                                                               | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21                                                                                                                                                                                                       | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>k</i> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27                               | $\frac{k_{\rm RWW3a}}{5.56E-33}$ 2.23E-32 7.10E-31 1.88E-30 4.74E-30 1.14E-29 4.77E-29 1.69E-27                                                                 |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )         3.20E-22         2.09E-22         7.44E-23         5.41E-23         4.02E-23         3.04E-23         1.98E-23         7.04E-24         3.24E-24                                                                                                                                                                                                                                                                                                     | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23           1.68E-23           8.77E-24                                                                                            | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20                                                                                                                                                                                              | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> )<br>3.20E-22<br>2.09E-22<br>7.44E-23<br>5.41E-23<br>4.02E-23<br>3.04E-23<br>1.98E-23<br>7.04E-24<br>3.24E-24<br>Keq(HO <sub>2</sub> (H <sub>2</sub> O) <sub>2</sub> b)                                                                                                                                                                                                                                                                              | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)         4.84E-22         3.29E-22         1.31E-22         9.85E-23         7.58E-23         5.94E-23         4.08E-23         1.68E-23         8.77E-24 <i>k</i> <sub>RWW4</sub>                                                                                     | k <sub>RWW3</sub> 4.01E-22         4.60E-22         7.75E-22         9.68E-22         1.23E-21         1.58E-21         2.45E-21         9.26E-21         3.24E-20                                                                                                                                   | $k_{\rm RWW3a}$ 3.83E-22 4.15E-22 6.03E-22 7.19E-22 8.71E-22 1.07E-21 1.55E-21 4.86E-21 1.45E-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>k</i> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26              | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )         3.20E-22         2.09E-22         7.44E-23         5.41E-23         4.02E-23         3.04E-23         1.98E-23         7.04E-24         3.24E-24         Keq(HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> b)         1.16E-29                                                                                                                                                                                                                  | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)         4.84E-22         3.29E-22         1.31E-22         9.85E-23         7.58E-23         5.94E-23         4.08E-23         1.68E-23         8.77E-24 <i>k</i> <sub>RWW4</sub> 4.61E-15                                                                            | k <sub>RWW3</sub> 4.01E-22           4.60E-22           7.75E-22           9.68E-22           1.23E-21           1.58E-21           2.45E-21           9.26E-21           3.24E-20           k' <sub>RWW4</sub> 1.60E-33                                                                             | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )         3.20E-22         2.09E-22         7.44E-23         5.41E-23         4.02E-23         3.04E-23         1.98E-23         7.04E-24         3.24E-24         Keq(HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> b)         1.16E-29         2.14E-29                                                                                                                                                                                                 | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)         4.84E-22         3.29E-22         1.31E-22         9.85E-23         7.58E-23         5.94E-23         4.08E-23         1.68E-23         8.77E-24 <i>k</i> <sub>RWW4</sub> 4.61E-15         4.41E-15                                                           | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20 $\frac{k'_{\rm RWW4}}{1.60E-33}$ 1.54E-32                                                                                                                                                    | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26              | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| Keq(HS···(H <sub>2</sub> O) <sub>2</sub> )         3.20E-22         2.09E-22         7.44E-23         5.41E-23         4.02E-23         3.04E-23         1.98E-23         7.04E-24         3.24E-24         Keq(HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>2</sub> b)         1.16E-29         2.14E-29         9.60E-29                                                                                                                                                                                | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)         4.84E-22         3.29E-22         1.31E-22         9.85E-23         7.58E-23         5.94E-23         4.08E-23         1.68E-23         8.77E-24 <i>k</i> <sub>RWW4</sub> 4.61E-15         4.41E-15         4.04E-15                                          | k <sub>RWW3</sub> 4.01E-22           4.60E-22           7.75E-22           9.68E-22           1.23E-21           1.58E-21           2.45E-21           9.26E-21           3.24E-20           k' <sub>RWW4</sub> 1.60E-33           1.54E-32           3.49E-30                                       | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| $\begin{array}{r} \text{Keq(HS}^{\dots}(\text{H}_2\text{O})_2) \\ \hline 3.20\text{E}-22 \\ 2.09\text{E}-22 \\ 7.44\text{E}-23 \\ 5.41\text{E}-23 \\ 4.02\text{E}-23 \\ 3.04\text{E}-23 \\ 1.98\text{E}-23 \\ 7.04\text{E}-24 \\ \hline 3.24\text{E}-24 \\ \hline \text{Keq(HO}_2^{\dots}(\text{H}_2\text{O})_2\text{b}) \\ \hline 1.16\text{E}-29 \\ 2.14\text{E}-29 \\ 9.60\text{E}-29 \\ 1.54\text{E}-28 \\ \end{array}$                                                                             | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23           1.68E-23           8.77E-24 <i>k</i> <sub>RWW4</sub> 4.61E-15           4.04E-15           3.96E-15                    | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20 $\frac{k'_{\rm RWW4}}{1.60E-33}$ 1.54E-32 3.49E-30 1.61E-29                                                                                                                                  | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26              | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| $\begin{array}{r} \text{Keq(HS}^{\dots}(\text{H}_2\text{O})_2) \\ \hline 3.20\text{E}-22 \\ 2.09\text{E}-22 \\ 7.44\text{E}-23 \\ 5.41\text{E}-23 \\ 4.02\text{E}-23 \\ 3.04\text{E}-23 \\ 1.98\text{E}-23 \\ 7.04\text{E}-24 \\ \hline 3.24\text{E}-24 \\ \hline \text{Keq(HO}_2^{\dots}(\text{H}_2\text{O})_2\text{b}) \\ \hline 1.16\text{E}-29 \\ 2.14\text{E}-29 \\ 9.60\text{E}-29 \\ 1.54\text{E}-28 \\ 2.40\text{E}-28 \\ \end{array}$                                                          | Keq(HS <sup></sup> (H <sub>2</sub> O) <sub>2</sub> a)           4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23           1.68E-23           8.77E-24 <i>k</i> <sub>RWW4</sub> 4.61E-15           4.41E-15           3.96E-15           3.89E-15 | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20 $\frac{k'_{\rm RWW4}}{1.60E-33}$ 1.54E-32 3.49E-30 1.61E-29 6.70E-29                                                                                                                         | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| $\begin{array}{r} \text{Keq(HS}^{\dots}(\text{H}_2\text{O})_2) \\ \hline 3.20\text{E}-22 \\ 2.09\text{E}-22 \\ 7.44\text{E}-23 \\ 5.41\text{E}-23 \\ 4.02\text{E}-23 \\ 3.04\text{E}-23 \\ 1.98\text{E}-23 \\ 7.04\text{E}-24 \\ \hline 3.24\text{E}-24 \\ \hline \text{Keq(HO}_2^{\dots}(\text{H}_2\text{O})_2\text{b}) \\ \hline 1.16\text{E}-29 \\ 2.14\text{E}-29 \\ 9.60\text{E}-29 \\ 1.54\text{E}-28 \\ 2.40\text{E}-28 \\ 3.64\text{E}-28 \\ \end{array}$                                       | Keq(HS:"( $H_2O$ ) <sub>2</sub> a)4.84E-223.29E-221.31E-229.85E-237.58E-235.94E-234.08E-231.68E-238.77E-24 $k_{RWW4}$ 4.61E-154.04E-153.96E-153.89E-153.85E-15                                                                                                                                                              | K <sub>RWW3</sub> 4.01E-22           4.60E-22           7.75E-22           9.68E-22           1.23E-21           1.58E-21           9.26E-21           3.24E-20           k' <sub>RWW4</sub> 1.60E-33           1.54E-32           3.49E-30           1.61E-29           6.70E-29           2.51E-28 | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| $\begin{array}{r} \text{Keq(HS}^{\dots}(\text{H}_2\text{O})_2) \\ \hline 3.20\text{E}-22 \\ 2.09\text{E}-22 \\ 7.44\text{E}-23 \\ 5.41\text{E}-23 \\ 4.02\text{E}-23 \\ 3.04\text{E}-23 \\ 1.98\text{E}-23 \\ 7.04\text{E}-24 \\ \hline 3.24\text{E}-24 \\ \hline \text{Keq(HO}_2^{\dots}(\text{H}_2\text{O})_2\text{b}) \\ \hline 1.16\text{E}-29 \\ 2.14\text{E}-29 \\ 9.60\text{E}-29 \\ 1.54\text{E}-28 \\ 2.40\text{E}-28 \\ 3.64\text{E}-28 \\ 7.03\text{E}-28 \end{array}$                       | $keq(HS^{}(H_2O)_2a)$ 4.84E-22           3.29E-22           1.31E-22           9.85E-23           7.58E-23           5.94E-23           4.08E-23           1.68E-23           8.77E-24 $k_{RWW4}$ 4.61E-15           4.41E-15           3.96E-15           3.89E-15           3.85E-15           3.79E-15                   | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20 $\frac{k'_{\rm RWW4}}{1.60E-33}$ 1.54E-32 3.49E-30 1.61E-29 6.70E-29 2.51E-28 2.01E-27                                                                                                       | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |
| $\begin{array}{r} \text{Keq(HS}^{\dots}(\text{H}_2\text{O})_2) \\ \hline 3.20\text{E}-22 \\ 2.09\text{E}-22 \\ 7.44\text{E}-23 \\ 5.41\text{E}-23 \\ 4.02\text{E}-23 \\ 3.04\text{E}-23 \\ 1.98\text{E}-23 \\ 7.04\text{E}-24 \\ \hline 3.24\text{E}-24 \\ \hline \text{Keq(HO}_2^{\dots}(\text{H}_2\text{O})_2\text{b}) \\ \hline 1.16\text{E}-29 \\ 2.14\text{E}-29 \\ 9.60\text{E}-29 \\ 1.54\text{E}-28 \\ 2.40\text{E}-28 \\ 3.64\text{E}-28 \\ 7.03\text{E}-28 \\ 3.59\text{E}-27 \\ \end{array}$ | Keq(HS:"( $H_2O$ ) <sub>2</sub> a)4.84E-223.29E-221.31E-229.85E-237.58E-235.94E-234.08E-231.68E-238.77E-24 $k_{RWW4}$ 4.61E-154.04E-153.96E-153.89E-153.89E-153.79E-153.77E-15                                                                                                                                              | $\frac{k_{\rm RWW3}}{4.01E-22}$ 4.60E-22 7.75E-22 9.68E-22 1.23E-21 1.58E-21 2.45E-21 9.26E-21 3.24E-20 $\frac{k'_{\rm RWW4}}{1.60E-33}$ 1.54E-32 3.49E-30 1.61E-29 6.70E-29 2.51E-28 2.01E-27 2.80E-25                                                                                              | $\begin{array}{c} k_{\rm RWW3a} \\ \hline 3.83E-22 \\ 4.15E-22 \\ 6.03E-22 \\ 7.19E-22 \\ 8.71E-22 \\ 1.07E-21 \\ 1.55E-21 \\ 4.86E-21 \\ 1.45E-20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>k</i> <sup>*</sup> <sub>RWW3</sub> 3.85E-33         1.57E-32         5.18E-31         1.39E-30         3.55E-30         8.60E-30         3.66E-29         1.35E-27         2.37E-26 | KRWW3a         5.56E-33         2.23E-32         7.10E-31         1.88E-30         4.74E-30         1.14E-29         4.77E-29         1.69E-27         2.87E-26 |

**Table S10** Effective Rate constants (cm<sup>3</sup>·molecules<sup>-1</sup>·s<sup>-1</sup>) for the  $H_2S + {}^{3}O_2$  formations from the  $HO_2$ + HS reaction occurring through water dimer-assisted Channels RWW1, RWW2 RWW3 and RWW4 within the temperature range of 240.0-425.0 K

Keq(HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub>) is the equilibrium constant of HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub> complex; Keq(HO<sub>2</sub>···(H<sub>2</sub>O)<sub>2</sub>a) is the equilibrium constant of HO<sub>2</sub>...(H<sub>2</sub>O)<sub>2</sub>a complex; Keq(HS...(H<sub>2</sub>O)<sub>2</sub>) is the equilibrium constant of HS...(H<sub>2</sub>O)<sub>2</sub> complex;  $Keq(HS...(H_2O)_2a)$  is the equilibrium constant of  $HS...(H_2O)_2a$  complex;  $Keq(HO_2...(H_2O)_2b)$  is the equilibrium constant of HO<sub>2</sub>...(H<sub>2</sub>O)<sub>2</sub>b complex;  $k_{RWW1}$  and  $k_{RWW1a}$  is the rate constant for the process of HO<sub>2</sub>...(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow \ ^{3}IMWW1 \rightarrow \ ^{3}TSWW1 \rightarrow \ ^{3}IMWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ H_{2}S^{\bullet\bullet\bullet}(H_{2}O)_{2} \ + \ ^{3}O_{2} \ \text{and} \ HO_{2}^{\bullet\bullet\bullet}(H_{2}O)_{2}a \ + \ HS \rightarrow \ ^{3}IMWW1 \rightarrow \ ^{3}IMWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW1 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW1 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW2 \rightarrow \ ^{3}TSWW1 \rightarrow \ ^{3}TSWU1 \rightarrow \ ^{3$  $^{3}$ IMWW1a  $\rightarrow$   $^{3}$ TSWW1a  $\rightarrow$   $^{3}$ IMWW2a  $\rightarrow$   $^{3}$ TSWW2a  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub>a +  $^{3}$ O<sub>2</sub>, respectively;  $k_{RWW2}$  and  $k_{RWW2a}$  is the rate constant for the process of  $HO_2^{\bullet\bullet\bullet}(H_2O)_2 + HS \rightarrow {}^{3}IMWW3 \rightarrow {}^{3}TSWW3 \rightarrow {}^{3}IMWW4 \rightarrow {}^{3}TSWW4 \rightarrow {}^{3}T$  $H_2S^{\bullet\bullet\bullet}(H_2O)_2 + {}^{3}O_2$  and  $HO_2^{\bullet\bullet\bullet}(H_2O)_2a + HS \rightarrow {}^{3}IMWW3a \rightarrow {}^{3}ISWW3a \rightarrow {}^{3}IMWW4a \rightarrow {}^{3}TSWW4a \rightarrow {}^{3}ISWW4a \rightarrow$  $H_2S^{\bullet\bullet\bullet}(H_2O)_2a + {}^{3}O_2$ , respectively;  $k_{RWW3}$  and  $k_{RWW3a}$  is the rate constant for the process of  $HS^{\bullet\bullet\bullet}(H_2O)_2 + HO_2 \rightarrow HO_2$  $^{3}$ IMWW5  $\rightarrow$   $^{3}$ TSWW5  $\rightarrow$  H<sub>2</sub>S•••(H<sub>2</sub>O)<sub>2</sub> +  $^{3}$ O<sub>2</sub> and HS•••(H<sub>2</sub>O)<sub>2</sub>a + HO<sub>2</sub>  $\rightarrow$   $^{3}$ IMWW5a  $\rightarrow$   $^{3}$ TSWW5a  $\rightarrow$  $H_2S^{\bullet\bullet\bullet}(H_2O)_2a + {}^{3}O_2$ , respectively;  $k_{RWW4}$  is the rate constant of water dimer-assisted Channels RWW4; [(H<sub>2</sub>O)<sub>2</sub>] is the concentration of the water dimer;  $k'_{RWW1}$  and  $k'_{RWW1a}$  is the effective rate constant for the process of  $HO_2^{\bullet\bullet\bullet}(H_2O)_2 + HS \rightarrow {}^{3}IMWW1 \rightarrow {}^{3}TSWW1 \rightarrow {}^{3}IMWW2 \rightarrow {}^{3}TSWW2 \rightarrow H_2S^{\bullet\bullet\bullet}(H_2O)_2 + {}^{3}O_2$  and  $\mathrm{HO}_{2}\bullet\bullet\bullet(\mathrm{H}_{2}\mathrm{O})_{2}a\ +\ \mathrm{HS}\ \rightarrow\ ^{3}\mathrm{IMWW1a}\ \rightarrow\ ^{3}\mathrm{ISWW1a}\ \rightarrow\ ^{3}\mathrm{ISWW2a}\ \rightarrow\ ^{3}\mathrm{TSWW2a}\ \rightarrow\ \mathrm{H}_{2}\mathrm{S}\bullet\bullet(\mathrm{H}_{2}\mathrm{O})_{2}a\ +\ ^{3}\mathrm{O}_{2},$ respectively;  $k'_{RWW2}$  and  $k'_{RWW2a}$  is the effective rate constant for the process of HO<sub>2</sub>•••(H<sub>2</sub>O)<sub>2</sub> + HS  $\rightarrow$  <sup>3</sup>IMWW3  $\rightarrow {}^{3}TSWW3 \rightarrow {}^{3}IMWW4 \rightarrow {}^{3}TSWW4 \rightarrow H_{2}S^{\bullet\bullet\bullet}(H_{2}O)_{2} + {}^{3}O_{2} \text{ and } HO_{2}{}^{\bullet\bullet\bullet}(H_{2}O)_{2}a + HS \rightarrow {}^{3}IMWW3a \rightarrow H_{2}S^{\bullet\bullet}(H_{2}O)_{2}a + HS \rightarrow {}^{3}IMWW3a \rightarrow H_{2}S^{\bullet}(H_{2}O)_{2}a + HS \rightarrow {}^{3}IMW3a \rightarrow H_{2}S^{\bullet}(H_{2$  ${}^{3}TSWW3a \rightarrow {}^{3}IMWW4a \rightarrow {}^{3}TSWW4a \rightarrow H_{2}S^{\bullet\bullet\bullet}(H_{2}O)_{2}a + {}^{3}O_{2}$ , respectively;  $k'_{RWW3}$  and  $k'_{RWW3a}$  is the effective rate constant for the process of  $HS^{\bullet\bullet\bullet}(H_2O)_2 + HO_2 \rightarrow {}^{3}IMWW5 \rightarrow {}^{3}TSWW5 \rightarrow H_2S^{\bullet\bullet\bullet}(H_2O)_2 + {}^{3}O_2$  and  $HS^{\bullet\bullet\bullet}(H_2O)_2a + HO_2 \rightarrow {}^3IMWW5a \rightarrow {}^3TSWW5a \rightarrow H_2S^{\bullet\bullet\bullet}(H_2O)_2a + {}^3O_2$ , respectively;  $k'_{RWW4}$  the effective rate constant of water dimer-assisted Channels RWW4;  $(k'_{RWW1} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} = k_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2) \cdot [(H_2O)_2], k'_{RWW1a} \cdot Keq(HO_2 \cdots (H_2O)_2], k'_{RWW1a} \cdot Keq(HO_2 \cdots ($  $k_{\text{RWW1a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2\text{a}) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2}} = k_{\text{RWW2}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot [(\text{H}_2\text{O})_2], \ k'_{\text{RWW2a}} = k_{\text{RWW2a}} \cdot \text{Keq}(\text{HO}_2 \cdots (\text{H}_2\text{O})_2) \cdot (\text{H}_2\text{O})_2 \cdot (\text{H}$  $\text{Keq}(\text{HO}_{2}^{\dots}(\text{H}_{2}\text{O})_{2}a) \cdot [(\text{H}_{2}\text{O})_{2}], \quad k'_{\text{RWW3}} = k_{\text{RWW3}} \cdot \text{Keq}(\text{HS}^{\dots}(\text{H}_{2}\text{O})_{2}) \cdot [(\text{H}_{2}\text{O})_{2}], \quad k'_{\text{RWW3a}} = k_{\text{RWW3a}} \cdot \text{Keq}(\text{HS}^{\dots}(\text{H}_{2}\text{O})_{2}) \cdot ((\text{H}_{2}\text{O})_{2}) \cdot ((\text{H}_{2}\text{O})$ Keq(HS•••(H<sub>2</sub>O)<sub>2</sub>a) · [(H<sub>2</sub>O)<sub>2</sub>],  $k'_{RWW4} = k_{RWW4} \cdot Keq(HO_2 \cdots (H_2O)_2b) \cdot [(H_2O)_2])$ 

# Part D The $H_2S + {}^3O_2$ formations from the $HO_2 + HS$ with

# catalyst X (X = $(H_2O)_3)(pS24-pS29)$

| Figure S6 | The geometrical structures of the optimized transitions state, intermediates, and complexes involving in HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> (HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> a) + HS reactions                                                                                                                                                                                  | pS25 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table S11 | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), entropies (S/(cal·mol <sup>-1</sup> ·K <sup>-1</sup> )), relative<br>energies ( $\Delta E$ and $\Delta(E+ZPE)/(kcal·mol-1)$ ), enthalpies ( $\Delta H(298)/(kcal·mol-1)$ ),<br>and free energies ( $\Delta G(298)/(kcal·mol-1)$ ) for the quadruple complexes<br>(HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> and HS···(H <sub>2</sub> O) <sub>3</sub> ) | pS26 |
| Table S12 | Zero point energy (ZPE/(kcal·mol <sup>-1</sup> )), relative energies ( $\Delta E$ and $\Delta(E+ZPE)/(kcal·mol-1)$ ), enthalpies ( $\Delta H(298)/(kcal·mol-1)$ ), and free energies ( $\Delta G(298)/(kcal·mol-1)$ ) for the HO <sub>2</sub> + HS with water trimer                                                                                                                                               | pS27 |
| Table S13 | Equilibrium constants and concentration of water trimer-assisted the $H_2S + {}^3O_2$ formations from the $HO_2$ + HS reaction within the temperature range of 240.0-425.0 K                                                                                                                                                                                                                                       | pS28 |
| Table S14 | Rate constants and effective rate constants (cm <sup>3</sup> ·molecules <sup>-1</sup> ·s <sup>-1</sup> ) for the H <sub>2</sub> S + ${}^{3}O_{2}$ formations from the HO <sub>2</sub> +HS reaction occurring through HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> (HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> a) + HS reactions within the temperature range of 240.0-425.0 K                        | pS29 |



Figure S6 The geometrical structures of the optimized transitions state, intermediates, and complexes involving water trimer-assisted Channels occurring through  $HO_2\cdots(H_2O)_3$  $(HO_2\cdots(H_2O)_3a) + HS$  reactions

| Species                                   | ZPE  | S     | $\triangle E$ | $\triangle H$ | $\triangle G$ | $\triangle$ (E+ZPE) |
|-------------------------------------------|------|-------|---------------|---------------|---------------|---------------------|
| $({\rm H_2O})_2 + {\rm H_2O}$             | 42.4 | 114.5 | 0.0           | 0.0           | 0.0           | 0.0                 |
| $(H_2O)_3$                                | 45.7 | 79.5  | -11.0         | -9.0          | -18.7         | -7.7                |
| $({\rm H}_{2}{\rm O})_{3} + {\rm HO}_{2}$ | 54.6 | 134.2 | 0.0           | 0.0           | 0.0           | 0.0                 |
| $HO_2$ ···· $(H_2O)_3$                    | 56.8 | 99.8  | -14.6         | -13.1         | -2.8          | -12.5               |
| $HO_2$ ···· $(H_2O)_3a$                   | 56.8 | 99.8  | -14.6         | -13.1         | -2.8          | -12.5               |
| $(H_2O)_3 + HS$                           | 49.5 | 125.4 | 0.0           | 0.0           | 0.0           | 0.0                 |
| $HS^{\dots}(H_2O)_3$                      | 50.6 | 99.7  | -4.9          | -4.0          | 3.6           | -3.8                |
| HS… (H <sub>2</sub> O) <sub>3</sub> a     | 50.6 | 99.7  | -4.9          | -4.0          | 3.6           | -3.8                |

**Table S11** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), entropies (S/(cal·mol<sup>-1</sup>·K<sup>-1</sup>)), relative energies  $(\Delta E \text{ and } \Delta(E+\text{ZPE})/(\text{kcal·mol}^{-1}))$ , enthalpies  $(\Delta H(298)/(\text{kcal·mol}^{-1}))$ , and free energies  $(\Delta G(298)/(\text{kcal·mol}^{-1}))$  for the quadruple complexes (HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> and HS···(H<sub>2</sub>O)<sub>3</sub>)

| Species                                                                           | ZPE  | ΔE    | ΔH    | ΔG    | $\Delta$ (E+ZPE) |
|-----------------------------------------------------------------------------------|------|-------|-------|-------|------------------|
| $HO_2$ ···( $H_2O$ ) <sub>3</sub> + $HS$                                          | 60.6 | 0.0   | 0.0   | 0.0   | 0.0              |
| HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> +HSa                           | 60.6 | 0.0   | 0.0   | 0.0   | 0.0              |
| $HS \cdots (H_2O)_3 + HO_2$                                                       | 59.5 | 9.8   | 9.0   | 6.4   | 8.7              |
| HS···(H <sub>2</sub> O) <sub>3</sub> +HO <sub>2</sub> a                           | 59.5 | 9.8   | 9.0   | 6.4   | 8.7              |
| <sup>3</sup> IMWWW1                                                               | 61.7 | -4.1  | -3.1  | 4.3   | -3.0             |
| <sup>3</sup> IMWWW1a                                                              | 61.7 | -4.1  | -3.1  | 4.3   | -3.0             |
| <sup>3</sup> TSWWW1                                                               | 60.8 | 1.6   | 1.8   | 10.0  | 1.9              |
| <sup>3</sup> TSWWW1a                                                              | 60.8 | 1.6   | 1.8   | 10.0  | 1.9              |
| <sup>3</sup> IMWWW2                                                               | 61.2 | 0.6   | 1.3   | 8.2   | -0.8             |
| <sup>3</sup> IMWWW2a                                                              | 61.0 | 1.5   | 2.1   | 8.4   | -0.7             |
| <sup>3</sup> TSWWW2                                                               | 57.5 | 10.3  | 7.2   | 14.6  | 7.3              |
| <sup>3</sup> TSWWW2a                                                              | 57.4 | 10.7  | 7.5   | 14.3  | 7.5              |
| $^{3}O_{2}+H_{2}S(H_{2}O)_{3}$                                                    | 58.9 | -31.0 | -32.3 | -33.6 | -32.7            |
| <sup>3</sup> O <sub>2</sub> +H <sub>2</sub> S···(H <sub>2</sub> O) <sub>3</sub> a | 58.9 | -31.0 | -32.3 | -33.6 | -32.7            |

**Table S12** Zero point energy (ZPE/(kcal·mol<sup>-1</sup>)), relative energies ( $\Delta E$  and  $\Delta(E+ZPE)/(kcal·mol<sup>-1</sup>)$ ), enthalpies ( $\Delta H(298)/(kcal·mol<sup>-1</sup>)$ ), and free energies ( $\Delta G(298)/(kcal·mol<sup>-1</sup>)$ ) for the HO<sub>2</sub> + HS with water trimer<sup>a</sup>

|                                     | 2                                  | 1                                  | U                                  |                                    |
|-------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| <i>T</i> /K                         | $Keq(H_2O)_3$                      | [(H <sub>2</sub> O) <sub>2</sub> ] | [H <sub>2</sub> O]                 | [(H <sub>2</sub> O) <sub>3</sub> ] |
| 240                                 | 6.00E-20                           | 3.00E+10                           | 8.29E+15                           | 1.49E+07                           |
| 250                                 | 2.95E-20                           | 1.63E+11                           | 2.21E+16                           | 1.06E+08                           |
| 278                                 | 5.30E-21                           | 8.99E+12                           | 2.25E+17                           | 1.07E+10                           |
| 288                                 | 3.12E-21                           | 2.65E+13                           | 4.25E+17                           | 3.51E+10                           |
| 298                                 | 1.90E-21                           | 7.18E+13                           | 7.64E+17                           | 1.04E+11                           |
| 308                                 | 1.20E-21                           | 1.79E+14                           | 1.31E+18                           | 2.82E+11                           |
| 325                                 | 5.88E-22                           | 7.54E+14                           | 3.04E+18                           | 1.35E+12                           |
| 375                                 | 1.06E-22                           | 2.07E+16                           | 2.12E+19                           | 4.66E+13                           |
| 425                                 | 2.94E-23                           | 2.26E+17                           | 8.56E+19                           | 5.69E+14                           |
| [(H <sub>2</sub> O) <sub>3</sub> ]= | Keq(H <sub>2</sub> O) <sub>3</sub> | · [                                | [(H <sub>2</sub> O) <sub>2</sub> ] | · [H <sub>2</sub> O]               |

**Table S13** Equilibrium constants and concentration of water trimer-assisted the  $H_2S + {}^{3}O_2$  formation from the  $HO_2$ + HS reaction within the temperature range of 240.0-425.0 K

| <i>T</i> /K                                                                                  | Keq(TSWWW1)                                                                                  | Keq(TSWWW1a)                                                                                 | $k_{\mathrm{TSWWW1}}$                                                                        | k <sub>TSWWW1a</sub>                                                                         | k <sub>TSWWW2</sub>                                                                          | k <sub>TSWWW2a</sub>                                                                         |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 240                                                                                          | 9.24E-26                                                                                     | 1.89E-25                                                                                     | 5.48E-18                                                                                     | 7.31E-18                                                                                     | 2.54E+08                                                                                     | 1.05E+09                                                                                     |
| 250                                                                                          | 8.85E-26                                                                                     | 1.85E-25                                                                                     | 8.01E-18                                                                                     | 2.10E-17                                                                                     | 3.30E+08                                                                                     | 1.32E+09                                                                                     |
| 278                                                                                          | 8.61E-26                                                                                     | 1.86E-25                                                                                     | 2.02E-17                                                                                     | 3.57E-17                                                                                     | 6.58E+08                                                                                     | 2.40E+09                                                                                     |
| 288                                                                                          | 8.70E-26                                                                                     | 1.91E-25                                                                                     | 2.66E-17                                                                                     | 4.78E-17                                                                                     | 8.31E+08                                                                                     | 2.94E+09                                                                                     |
| 298                                                                                          | 8.88E-26                                                                                     | 1.97E-25                                                                                     | 4.20E-17                                                                                     | 7.05E-17                                                                                     | 1.04E+09                                                                                     | 3.57E+09                                                                                     |
| 308                                                                                          | 9.14E-26                                                                                     | 2.05E-25                                                                                     | 5.54E-17                                                                                     | 9.78E-17                                                                                     | 1.30E+09                                                                                     | 4.33E+09                                                                                     |
| 325                                                                                          | 9.73E-26                                                                                     | 2.21E-25                                                                                     | 9.41E-17                                                                                     | 1.90E-16                                                                                     | 1.85E+09                                                                                     | 5.90E+09                                                                                     |
| 375                                                                                          | 1.24E-25                                                                                     | 2.88E-25                                                                                     | 4.69E-16                                                                                     | 7.11E-16                                                                                     | 4.67E+09                                                                                     | 1.33E+10                                                                                     |
| 425                                                                                          | 1.63E-25                                                                                     | 3.86E-25                                                                                     | 1.14E-15                                                                                     | 2.43E-15                                                                                     | 1.01E+10                                                                                     | 2.65E+10                                                                                     |
| k <sub>RWWW1</sub>                                                                           | $k_{\rm RWWW1a}$                                                                             | $Keq(HO_2\cdots(H_2O)_3)$                                                                    | Keq(HO <sub>2</sub> ···(H <sub>2</sub> O) <sub>3</sub> a)                                    | [(H <sub>2</sub> O) <sub>3</sub> ]                                                           | k' <sub>RWWW1</sub>                                                                          | k'pwww10                                                                                     |
|                                                                                              | ien n nu                                                                                     | I( = ( = )+)                                                                                 | 1( 2 ( 2 )))                                                                                 | L( 2 - 75]                                                                                   |                                                                                              | W K W W W Ia                                                                                 |
| 5.48E-18                                                                                     | 7.31E-18                                                                                     | 7.84E-16                                                                                     | 7.84E-16                                                                                     | 1.49E+07                                                                                     | 6.40E-26                                                                                     | 8.54E-26                                                                                     |
| 5.48E-18<br>8.01E-18                                                                         | 7.31E-18<br>2.10E-17                                                                         | 7.84E-16<br>2.73E-16                                                                         | 7.84E-16<br>2.73E-16                                                                         | 1.49E+07<br>1.06E+08                                                                         | 6.40E-26<br>2.32E-25                                                                         | 8.54E-26<br>6.08E-25                                                                         |
| 5.48E-18<br>8.01E-18<br>2.02E-17                                                             | 7.31E-18<br>2.10E-17<br>3.57E-17                                                             | 7.84E-16<br>2.73E-16<br>2.14E-17                                                             | 7.84E-16<br>2.73E-16<br>2.14E-17                                                             | 1.49E+07<br>1.06E+08<br>1.07E+10                                                             | 6.40E-26<br>2.32E-25<br>4.63E-24                                                             | 8.54E-26<br>6.08E-25<br>8.19E-24                                                             |
| 5.48E-18<br>8.01E-18<br>2.02E-17<br>2.66E-17                                                 | 7.31E-18<br>2.10E-17<br>3.57E-17<br>4.78E-17                                                 | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18                                                 | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18                                                 | 1.49E+07<br>1.06E+08<br>1.07E+10<br>3.51E+10                                                 | 6.40E-26<br>2.32E-25<br>4.63E-24<br>9.12E-24                                                 | 8.54E-26<br>6.08E-25<br>8.19E-24<br>1.64E-23                                                 |
| 5.48E-18<br>8.01E-18<br>2.02E-17<br>2.66E-17<br>4.20E-17                                     | 7.31E-18<br>2.10E-17<br>3.57E-17<br>4.78E-17<br>7.05E-17                                     | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18                                     | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18                                     | 1.49E+07<br>1.06E+08<br>1.07E+10<br>3.51E+10<br>1.04E+11                                     | 6.40E-26<br>2.32E-25<br>4.63E-24<br>9.12E-24<br>2.05E-23                                     | 8.54E-26<br>6.08E-25<br>8.19E-24<br>1.64E-23<br>3.44E-23                                     |
| 5.48E-18<br>8.01E-18<br>2.02E-17<br>2.66E-17<br>4.20E-17<br>5.54E-17                         | 7.31E-18<br>2.10E-17<br>3.57E-17<br>4.78E-17<br>7.05E-17<br>9.78E-17                         | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18                         | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18                         | 1.49E+07<br>1.06E+08<br>1.07E+10<br>3.51E+10<br>1.04E+11<br>2.82E+11                         | 6.40E-26<br>2.32E-25<br>4.63E-24<br>9.12E-24<br>2.05E-23<br>3.71E-23                         | 8.54E-26<br>6.08E-25<br>8.19E-24<br>1.64E-23<br>3.44E-23<br>6.54E-23                         |
| 5.48E-18<br>8.01E-18<br>2.02E-17<br>2.66E-17<br>4.20E-17<br>5.54E-17<br>9.41E-17             | 7.31E-18<br>2.10E-17<br>3.57E-17<br>4.78E-17<br>7.05E-17<br>9.78E-17<br>1.90E-16             | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18<br>8.20E-19             | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18<br>8.20E-19             | 1.49E+07<br>1.06E+08<br>1.07E+10<br>3.51E+10<br>1.04E+11<br>2.82E+11<br>1.35E+12             | 6.40E-26<br>2.32E-25<br>4.63E-24<br>9.12E-24<br>2.05E-23<br>3.71E-23<br>1.04E-22             | 8.54E-26<br>6.08E-25<br>8.19E-24<br>1.64E-23<br>3.44E-23<br>6.54E-23<br>2.10E-22             |
| 5.48E-18<br>8.01E-18<br>2.02E-17<br>2.66E-17<br>4.20E-17<br>5.54E-17<br>9.41E-17<br>4.69E-16 | 7.31E-18<br>2.10E-17<br>3.57E-17<br>4.78E-17<br>7.05E-17<br>9.78E-17<br>1.90E-16<br>7.11E-16 | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18<br>8.20E-19<br>6.43E-20 | 7.84E-16<br>2.73E-16<br>2.14E-17<br>9.76E-18<br>4.70E-18<br>2.37E-18<br>8.20E-19<br>6.43E-20 | 1.49E+07<br>1.06E+08<br>1.07E+10<br>3.51E+10<br>1.04E+11<br>2.82E+11<br>1.35E+12<br>4.66E+13 | 6.40E-26<br>2.32E-25<br>4.63E-24<br>9.12E-24<br>2.05E-23<br>3.71E-23<br>1.04E-22<br>1.40E-21 | 8.54E-26<br>6.08E-25<br>8.19E-24<br>1.64E-23<br>3.44E-23<br>6.54E-23<br>2.10E-22<br>2.13E-21 |

**Table S14** Rate constants and effective rate constants (cm<sup>3</sup>·molecules<sup>-1</sup>·s<sup>-1</sup>) for the  $H_2S + {}^{3}O_2$  formations from the HO<sub>2</sub>+HS reaction occurring through HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> (HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub>a) + HS reactions within the temperature range of 240.0-425.0 K

Keq(IMWWW1) and Keq(IMWWW1a) is the equilibrium constant for the process of HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a, respectively;  $k_{TSWWW1}$  and  $k_{TSWWW1a}$  is the rate constant for the process of HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1  $\rightarrow$  <sup>3</sup>TSWWW1  $\rightarrow$  <sup>3</sup>IMWWW2 and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>TSWWW2a, respectively;  $k_{TSWWW2a}$  and  $k_{TSWWW2a}$  is the rate constant for the process of <sup>3</sup>IMWWW2  $\rightarrow$  <sup>3</sup>TSWWW2  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1  $\rightarrow$  <sup>3</sup>TSWWW1  $\rightarrow$  <sup>3</sup>IMWWW2  $\rightarrow$  <sup>3</sup>TSWWW2  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW2a  $\rightarrow$  H<sub>2</sub>S···(H<sub>2</sub>O)<sub>3</sub> + <sup>3</sup>O<sub>2</sub> and HO<sub>2</sub>···(H<sub>2</sub>O)<sub>3</sub> + HS  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWVa  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW1a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWVa  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMWWW2a  $\rightarrow$  <sup>3</sup>TSWWW1a  $\rightarrow$  <sup>3</sup>IMW