Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016

Supplementary Information

Chun Zhu¹*, Jin-Xia Liang^{2,*}

¹School of Chemistry and Chemical Engineering, Guizhou University, Guizhou 550025, China ²Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Synergetic Innovation Center of Scientific Big Data for Advanced Manufacturing Technology, Guizhou Normal College, Guiyang, 550018, China

Figure S1. Optimized structures of Au₂(Au-cor)₂.

Figure S2. Binding energies (BE) four Model 1, Model 2, Model 3 and 1D-1MGW.

Figure S3. Predicted UV-Vis spectra of Model 1, Model 2 and Model 3.

Figure S4. The Au-OH, Au-(OH)₂ and Au-(OH)₃ molecules are calculated in a cubic box of 20*20*20 Å. Copyright from ref. 54

Figure S5. The calculated band structure of the 1D-IMGW by PBEO hybrid density functional. The Fermi level is set at zero

Figure S6. The calculated total energies of the 1D-IMGW using different k-points 7x1x1, 8x1x1, 9x1x1, 10x1x1, 11x1x1, 12x1x1, and 13x1x1 respectively.

Figure S7. The enlarged band structure (left) and density of states (right) of the 1D-IMGW calculated by PBE. The Fermi level is set at zero.

Table S1. The calculated bond lengths of Au-Au (D_{Au-Au}) in **Model 1** using different density functional theory (DFT) of B3LYP, CAM-B3LYP, BP86 and PBE.

DFT	B3LYP	CAM-B3LYP	BP86	PBE
D _{Au-Au}	3.102	3.067	2.940	2.941

Table S2. Bader charges for Au atoms in the center of corrole rings (Au_c) and between the corrole rings (Au_i) and Au-OH, Au-(OH)₂ and Au-(OH)₃ molecules in the cubic box of 20*20*20 Å.

Species	Au-O Bond length (Å)	Au Valence electron	Au Bader charge (e)
Au _c		10.033	0.967
		10.051	0.949
Au _i		11.131	-0.131
		11.141	-0.141
Au-OH	1.974	10.681	0.319
Au-(OH) ₂	1.939	10.412	0.588
Au-(OH)₃	2.012, 2.023, 2.015	10.079	0.921

ECP Valance electrons used in the calculations: Au (d¹⁰s¹). Copyright from ref. 54