Supporting Information

The influence of the dopant concentration on temperature dependent emission spectra in LiLa_{1-x-y}Eu_xTb_yP₄O₁₂ nanocrystals: toward rational designing of highly-sensitive luminescent nanothermometer

L. Marciniak* and A. Bednarkiewicz

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland

* corresponding author: <u>l.marciniak@int.pan.wroc.pl</u>

KEYWORDS: luminescent thermometer, nanocrystals, *Tb3+*, *Eu3+*, cross-relaxation, energy transfer

Figure S1. X-ray diffraction data for LiLa1-x-yEuxTbyP4O12 nanocrystals

Figure S2. TEM images of LiLa_{0.5}Eu_{0.1}Tb_{0.4}P₄O₁₂ nanocrystals –a and b with grain size distribution –c.

Figure S3. The comparison of emission spectra of $LiLa_{1-x-y}Eu_xTb_yP_4O_{12}$ for constant x=0.1 concentration of Eu^{3+} ions-a; and for constant x=0.1 concentration of Tb^{3+} ions-b.

Figure S4. Emission spectra of LiLa_{0.89}Eu_{0.01}Tb_{0.1}P₄O₁₂ nanocrystals measured at different temperatures.

Figure S5. Temperature evolution of Tb³⁺ (a) and Eu³⁺ (b) emission intensities in LiLa_{1-x-y}Eu_xTb_yP₄O₁₂ nanocrystals for samples doped with constant x=0.1 Eu³⁺ ions concentration and different Tb³⁺ concentration; temperature evolution of Tb³⁺ (c) and Eu³⁺ (d) emission intensities respectively for samples doped with constant x=0.1 Tb³⁺ ions concentration and different Eu³⁺ concentration.

Energy transfer which can take place between Eu^{3+} and Tb^{3+} ions can be described by following rate equations:

$$\frac{dn_0}{dt} = -\Phi n_0 + n_3 W_{30} + n_4 W_{40} + n_8 n_1 W^{10} - n_4 n_0 W^{CR4}$$
(S1)

$$\frac{dn_1}{dt} = n_3 W_{31} + n_4 W_{41} - n_8 n_1 W^{10} - n_1 W^{1NR}$$
(S2)

$$\frac{dn_2}{dt} = n_3 W_{32} + n_4 W_{42} + n_4 n_0 W^{CR4} - n_2 W^{2NR}$$
(S3)

$$\frac{dn_3}{dt} = -n_3 W_3 - W^{ET38} n_3 + n_4 n_0 W^{CR4} + n_4 n_5 W^{CR5} + W^{BET}_{83} n_8 - W^{3NR} n_3 + W^{4NR} n_4$$
(S4)

$$\frac{dn_4}{dt} = \Phi n_0 - n_4 W_4 - n_4 n_0 W^{CR4} - n_4 n_5 W^5 - n_4 W^{4NR}$$
(S5)

$$\frac{dn_5}{dt} = n_7 W_{71} - n_5 n_4 W^5 + n_6 n_8 W^{11}$$
(S6)

$$\frac{dn_6}{dt} = -n_6 n_8 W^{11} + n_7 W^{7NR} + W_{86} n_8 - W^{NR6} n_6$$
(S7)

$$\frac{dn_7}{dt} = -W^{7NR}n_7 + n_5n_4W^5 + W^{87}n_8 + W^{7NR}n_7$$
(S8)

$$\frac{dn_8}{dt} = -n_8 W_8 - n_8 n_6 W^{11} - n_8 n_1 W^{10} + W^{9NR} n_9 - n_8 W^{NR8}$$
(S9)

$$\frac{dn_9}{dt} = -W^{NR9}n_9 + W^{10}n_9n_1 - n_9W^{BET}_{93} + n3W^{ET}_{93} + W^{NR10}n_{10}$$
(S10)

$$\sum_{i} n_i = N \tag{S11}$$

$$\frac{n_i}{N} = N_i \tag{S12}$$

where W^{NRi} represent the nonradiative decay rate of the ith-state, W_{ij} represents the probability of radiative transition between i and j states, W_{ij}^{ET} represents probability of energy transfer between i and j state and BET is back (Eu³⁺ \rightarrow Tb³⁺) energy transfer probability. W^{CR10} represents probability of cross relaxation process represented as process 10 in Fig. 5 and n_i is the population of ith state.