SUPPORTING INFORMATION

Molecular Dynamics Investigations of Regioselectivity of Anionic/Aromatic Substrates by a Family of Enzymes: A Case Study of Diclofenac Binding in CYP2C Isoforms

YingLu Cui^a, Fang Xu^a, and Rongling Wu^{*a, b}

^aCenter for Computational Biology, College of Biological Sciences and Biotechnology,
Beijing Forestry University, Beijing, 100083, China;
^bCenter for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033, USA

Correspondence: Professor R Wu, Center for Computational Biology, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China. E-mail: rwu@phs.psu.edu

systems	GB ^{HCT} (igb=1)		GB ^{OBC1} (igb=2)			GB ^{OBC2} (igb=5)			
	$\varepsilon_{in} = 1$	$\epsilon_{in} = 2$	$\epsilon_{in} = 4$	$\varepsilon_{in} = 1$	$\varepsilon_{in} = 2$	$\epsilon_{in} = 4$	$\varepsilon_{in} = 1$	$\epsilon_{in} = 2$	$\epsilon_{in} = 4$
CYP2C9_i n108_4'oh	-13.3±3.0	-12.5±2.3	-12.2±2.5	-12.2±2.0	-12.2±2.5	-12.4±2.6	-12.3±3.2	-11.4±2.6	-10.5±2.6
CYP2C19 _in108_4' oh	-4.6±3.6	-5.1±2.7	-5.5±2.6	-4.7±1.0	-5.1±2.6	-5.8±2.6	-5.0±3.4	-5.7±2.8	-5.8±2.7
CYP2C8_ o108_5oh	-8.5±1.8	-8.7±1.9	-9.3±2.0	-7.7±1.7	-8.1±1.8	-8.8±2.0	-8.2±1.9	-8.4±1.8	-8.7±1.9
R ²	0.77	0.72	0.58	0.84	0.80	0.78	0.79	0.74	0.50

Table S1. The binding free energies calculated with different polar solvation models

 and solute dielectric constants (Energy unit: kcal/mol, with standard deviations)

 Table S2. Decomposition of binding free energy (kcal mol⁻¹) on per-residue basis for

 CYP2C9_in108_4'oh, CYP2C19_in108_4'oh, and CYP2C8_o108_5oh complexes

Residue	$\Delta E_{ m vdw}$	$\Delta E_{\rm ele}$	$\Delta E_{\rm GB}$	$\Delta G_{ m SASA}$	$\Delta G_{ m bind}$
Arg108	0.74	-5.79	1.75	-0.23	-3.53
Phe476	-1.44	-0.88	0.77	-0.25	-1.80
Leu208	-1.00	-0.39	0.20	-0.13	-1.32
Asn204	-0.88	0.33	-0.61	-0.13	-1.29
Leu362	-1.00	-0.45	0.36	-0.13	-1.22
Leu366	-0.83	-1.01	0.91	-0.16	-1.09
Phe114	-0.84	-0.62	0.73	-0.08	-0.81
Thr301	-0.78	-0.86	0.92	-0.06	-0.78
Ala477	-0.55	-0.17	0.06	-0.08	-0.74
Phe100	-0.52	-0.20	0.13	-0.04	-0.63
Ile205	-0.62	0.35	-0.28	-0.05	-0.60
Leu361	-0.63	0.67	-0.60	-0.03	-0.59
Val113	-0.25	-1.15	0.96	-0.03	-0.47
HEM500	-0.70	23.35	-23.09	-0.03	-0.47

(A) CYP2C9_in108_4'oh complex

(B) CYP2C19_in108_4'oh complex

Residue	$\Delta E_{ m vdw}$	$\Delta E_{\rm ele}$	$\Delta G_{ m GB}$	$\Delta G_{ m SASA}$	$\Delta G_{ m bind}$
Asn204	-0.10	-4.51	2.89	-0.12	-1.84
Phe114	-1.30	-1.09	1.07	-0.16	-1.48
Gly296	-0.87	-2.43	2.11	-0.08	-1.27
Ala297	-1.54	-0.26	0.75	-0.16	-1.21
Phe476	-1.18	-1.22	1.44	-0.24	-1.20
Arg108	-1.01	-29.15	29.13	-0.16	-1.19
HEM500	-2.17	23.68	-22.53	-0.08	-1.10

Leu366	-0.95	-0.74	0.70	-0.10	-1.09	
Glu300	-0.77	16.39	-16.35	-0.08	-0.81	
Asp293	-1.06	25.38	-25.01	-0.03	-0.72	
Thr301	-0.62	-1.43	1.41	-0.05	-0.69	
Val113	-0.72	-0.07	0.20	-0.07	-0.66	
Ile362	-0.50	-0.18	0.15	-0.06	-0.59	
Phe100	-0.32	-0.12	0.04	-0.03	-0.43	

(C) CYP2C8_o108_5oh complex

Residue	$\Delta E_{ m vdw}$	$\Delta E_{ m ele}$	$\Delta G_{ m GB}$	$\Delta G_{ m SASA}$	$\Delta G_{ m bind}$
Phe205	-1.99	-0.14	0.18	-0.25	-2.20
Val366	-1.44	-0.37	0.26	-0.30	-1.85
Val296	-1.26	-1.44	1.40	-0.16	-1.46
Thr301	-1.18	0.04	-0.10	-0.12	-1.36
Ala297	-1.18	-0.22	0.30	-0.07	-1.17
Ile113	-1.03	0.01	0.02	-0.17	-1.17
Val362	-0.56	-0.14	-0.07	-0.08	-0.85
Val477	-0.87	0.32	-0.16	-0.12	-0.83
HEM500	-0.98	-1.71	1.98	-0.11	-0.82
Glu300	-0.84	-1.84	2.03	-0.09	-0.74
Leu361	-0.68	0.01	0.17	-0.04	-0.54
Ile476	-0.48	0.13	-0.12	-0.06	-0.53
Leu208	-0.33	-0.04	-0.03	-0.08	-0.48

Figure S1. Binding characteristics of diclofenac for each CYP2C isoform. The crucial residues involved in ligand binding are shown in stick representation. Diclofenac in each conformer are shown in stick representation in blue and yellow, respectively. The black asterisk (*) represents the metabolic site of diclofenac for each isoform.

Figure S2. Time-dependent rms deviation values from the starting structures along the simulations for CYP2C enzymes.

Figure S3. (A) Distinct local structural features of the B-C loop for CYP2C9_in108_4'oh (yellow), CYP2C19_in108_4'oh (salmon pink), and CYP2C8_o108_5oh (blue) complexes. (B) Relocation of the key pivot residues in the B-C loop of CYP2C9_in108_4'oh complex (yellow) compared with those of CYP2C19_108_4'oh complex (salmon pink).

Figure S4. Distances between the centers of the aromatic groups of Phe226 and Trp212 in CYP2C9_in108_4'oh (black), CYP2C19_in108_4'oh (red), and CYP2C8_o108_5oh (green) complexes.

Figure S5. Variations of SASA values of HC1 along MD simulations for CYP2C9_in108_4'oh (black), CYP2C19_in108_4'oh (red), and CYP2C8_o108_5oh (green) complexes.

Figure S6. Diagram of the active site volumes for CYP2C isoforms. The volumes were calculated by online tool CASTp (http://sts.bioe.uic.edu/castp/).

