ARTICLE TYPE

Eletronic Supplementary Information to: Endohedral metallofullerenes, $M@C_{60}$ (M=Ca, Na, Sr): Selective adsorption and sensing of open-shell NO_x gases

Sherif Abdulkader Tawfik,*a X. Y. Cui,^b S. P. Ringer,^b and C. Stampfl^a

Received Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

Table 1 Net Hirshfeld charge in units of electron charge, |e|. ρ_M represents the Hirshfeld charge of the metal dopant before gas adsorption. $\Delta \rho_M$ represents the change in the Hirshfeld charge of the metal dopant after gas adsorption compared to the net Hirshfeld charge of the metal before the adsorption of the gas molecule. ρ_g represents the Hirshfeld charge of the gas molecule. (GGA results)

System	$ ho_M$	Δho_M		$ ho_g$	
		NO	NO ₂	NO	NO ₂
C ₆₀				+0.021	-0.011
Ca@C ₆₀	+0.756	-0.005	-0.008	+0.015	-0.129
Na@C ₆₀	+0.376	-0.001	-0.011	+0.035	-0.131
Sr@C ₆₀	+0.69	-0.011	-0.013	+0.002	-0.129

1 Cartesian Coordinates

The Cartesian coordinate files for the 32 GGA structures and the 32 VV structures are attached in a separate zipped folder.

2 Spin Density Distribution

^a School of Physics, The University of Sydney, Sydney, New South Wales, 2006, Australia. E-mail: sherif.abbas@sydney.edu.au

^b Australian Institute for Nanoscale Science and Technology, and School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales, 2006, Australia.

Fig. 1 (Color online) The spin-density distributions for the Ca@C₆₀+NO. The isovalue is $\pm 0.0005 e/Å^3$.

Fig. 2 (Color online) The spin-density distributions for the Ca@C₆₀+NO₂. The isovalue is $\pm 0.0005 e/Å^3$.

Fig. 3 (Color online) The spin-density distributions for the Na@C_{60}+NO. The isovalue is $\pm 0.0005 e/Å^3$.

Fig. 4 (Color online) The spin-density distributions for the Sr@C_{60}. The isovalue is $\pm 0.0005 \textit{e}/\text{Å}^3.$

This journal is © The Royal Society of Chemistry [year]

Fig. 5 (Color online) The spin-density distributions for the Sr@C₆₀+NO. The isovalue is $\pm 0.0005 e/Å^3$.

Fig. 6 (Color online) The spin-density distributions for the Sr@C_{60}+NO_2. The isovalue is $\pm 0.0005 e/Å^3$.

Fig. 7 (Color online) The current-voltage characteristics (IVC) for the Na@C₆₀ and Ca@C₆₀ systems for pure (without NO₂ adsorption) and with NO₂ adsorption. The lowest energy configurations (as shown in Fig. 4 in the manuscript) are repeated here in parts (a) and (b). The IVC for the two alternative configurations B and C (described in the main text) are shown in parts (c-f).